Suppr超能文献

通过对微小RNA-信使核糖核酸高通量图谱的综合分析挖掘微小RNA调控网络

Tapping microRNA regulation networks through integrated analysis of microRNA-mRNA high-throughput profiles.

作者信息

Saleh Anthony D, Cheng Hui

机构信息

Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 10 Center Drive Rm 5D55, Bethesda, MD, USA,

出版信息

Methods Mol Biol. 2014;1182:279-88. doi: 10.1007/978-1-4939-1062-5_24.

Abstract

Understanding the biological relevance and context of microRNA (miRNA) regulation of target mRNAs is difficult to ascertain because an individual miRNA aids simultaneously in the regulation of hundreds of mRNAs in a cell. With the increasing availability of large public datasets that profile both mRNA and miRNA expression levels from the same samples, it is possible to apply robust statistical methods to identify global negative correlations in miRNA and target mRNA expression. Using a dataset from The Cancer Genome Atlas as a case study, we show how to use linear regression analysis followed by permutation-based false discovery rate to assign high statistical power to pair-wise negative correlations of miRNA and mRNA expression. Used in conjunction with available prediction tools or other target databases, a high confidence dataset of global miRNA-mRNA interactions can be generated. We also describe further methods to prioritize identified interactions by integrating with mutation, copy number variation, methylation, or survival data to support observations and provide context. Finally, we discuss methods to experimentally validate selected novel targets.

摘要

由于单个微小RNA(miRNA)同时参与细胞中数百种信使核糖核酸(mRNA)的调控,因此很难确定miRNA对靶mRNA调控的生物学相关性和背景情况。随着越来越多可公开获取的大型数据集能够描绘同一样本中的mRNA和miRNA表达水平,运用强大的统计方法来识别miRNA与靶mRNA表达之间的全局负相关成为可能。以癌症基因组图谱的一个数据集为例,我们展示了如何先进行线性回归分析,再采用基于排列的错误发现率,从而为miRNA与mRNA表达的成对负相关赋予较高的统计效力。结合现有的预测工具或其他靶标数据库,能够生成一个关于全局miRNA-mRNA相互作用的高可信度数据集。我们还描述了进一步的方法,即通过整合突变、拷贝数变异、甲基化或生存数据,对已识别的相互作用进行优先级排序,以支持相关观察并提供背景信息。最后,我们讨论了通过实验验证选定的新靶标的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验