Ghazanfari Lida, Khosroshahi Mohammad E
Laser and Nanobiophotonics Laboratory, Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
Laser and Nanobiophotonics Laboratory, Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
Mater Sci Eng C Mater Biol Appl. 2014 Sep;42:185-91. doi: 10.1016/j.msec.2014.05.002. Epub 2014 May 22.
This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this paper, simulations and detailed analysis are carried out for different nanoshell geometry to achieve a maximum heat power. Structural, magnetic and optical properties of MNSs are assessed using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), UV-VIS spectrophotometer, dynamic light scattering (DLS), and transmission electron microscope (TEM). Magnetic saturation of synthesized magnetite nanoparticles are reduced from 46.94 to 11.98 emu/g after coating with gold. The performance of the proposed optical-thermal modeling technique is verified by simulation and experimental results.
本文提出了一种用于生物医学应用的合成磁光纳米壳(MNSs)光学和热学建模的通用方法。采用共沉淀法制备了直径为9.5±1.4 nm的超顺磁性磁铁矿纳米颗粒,随后用一层薄金覆盖,得到15.8±3.5 nm的MNSs。本文针对不同的纳米壳几何结构进行了模拟和详细分析,以实现最大热功率。使用振动样品磁强计(VSM)、X射线衍射(XRD)、紫外可见分光光度计、动态光散射(DLS)和透射电子显微镜(TEM)对MNSs的结构、磁性和光学性质进行了评估。合成的磁铁矿纳米颗粒在涂覆金后,磁饱和度从46.94emu/g降至11.98emu/g。模拟和实验结果验证了所提出的光学-热学建模技术的性能。