Suppr超能文献

用于黑色素瘤自动检测的最大似然法和光谱角映射器算法的比较研究

Comparative study of maximum likelihood and spectral angle mapper algorithms used for automated detection of melanoma.

作者信息

Ibraheem I

机构信息

Faculty of Biomedical Engineering, Al-Andalus Private University for Medical Sciences, Al-Qadmus, Tartus, Syria.

出版信息

Skin Res Technol. 2015 Feb;21(1):84-9. doi: 10.1111/srt.12160. Epub 2014 Jul 28.

Abstract

BACKGROUND

Melanoma is a leading fatal illness responsible for 80% of deaths from skin cancer. It originates in the pigment-producing melanocytes in the basal layer of the epidermis. Melanocytes produce the melanin (the dark pigment), which is responsible for the color of skin. As all cancers, melanoma is caused by damage to the DNA of the cells, which causes the cell to grow out of control, leading to a tumor, which is much more dangerous if it cannot be found or detected early. Only biopsy can determine exact malformation diagnosis, although it can rise metastasizing. When a melanoma is suspected, the usual standard procedure is to perform a biopsy and to subsequently analyze the suspicious tissue under the microscope.

METHODS

In this paper, we provide a new approach using methods known as 'imaging spectroscopy' or 'spectral imaging' for early detection of melanoma using two different supervised classifier algorithms, maximum likelihood (ML) and spectral angle mapper (SAM). SAM rests on the spectral 'angular distances' and the conventional classifier ML rests on the spectral distance concept.

RESULTS AND CONCLUSIONS

The results show that the ML classifier was more efficient for pixel classification than SAM. However, SAM was more suitable for object classification.

摘要

背景

黑色素瘤是一种主要的致命疾病,占皮肤癌死亡人数的80%。它起源于表皮基底层中产生色素的黑素细胞。黑素细胞产生黑色素(深色色素),它决定了皮肤的颜色。与所有癌症一样,黑色素瘤是由细胞DNA受损引起的,这会导致细胞生长失控,形成肿瘤,如果不能早期发现或检测到,肿瘤会更加危险。只有活检才能确定确切的畸形诊断,尽管活检会增加转移的风险。当怀疑患有黑色素瘤时,通常的标准程序是进行活检,随后在显微镜下分析可疑组织。

方法

在本文中,我们提供了一种新方法,使用称为“成像光谱学”或“光谱成像”的方法,通过两种不同的监督分类算法,即最大似然法(ML)和光谱角映射器(SAM),来早期检测黑色素瘤。SAM基于光谱“角距离”,传统分类器ML基于光谱距离概念。

结果与结论

结果表明,ML分类器在像素分类方面比SAM更有效。然而,SAM更适合于目标分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验