Lyons Deirdre C, Martindale Mark Q, Srivastava Mansi
*Department of Biology, 4115 French Family Science Center, Duke University, Durham, NC 27708, USA; Whitney Laboratory for Marine Biosciences, University of Florida, St Augustine, FL 32080, USA; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
*Department of Biology, 4115 French Family Science Center, Duke University, Durham, NC 27708, USA; Whitney Laboratory for Marine Biosciences, University of Florida, St Augustine, FL 32080, USA; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
Integr Comp Biol. 2014 Oct;54(4):658-66. doi: 10.1093/icb/icu108. Epub 2014 Aug 8.
An adult animal's form is shaped by the collective behavior of cells during embryonic development. To understand the forces that drove the divergence of animal body-plans, evolutionary developmental biology has focused largely on studying genetic networks operating during development. However, it is less well understood how these networks modulate characteristics at the cellular level, such as the shape, polarity, or migration of cells. We organized the "Cell's view of animal body plan evolution" symposium for the 2014 The Society for Integrative and Comparative Biology meeting with the explicit goal of bringing together researchers studying the cell biology of embryonic development in diverse animal taxa. Using a broad range of established and emerging technologies, including live imaging, single-cell analysis, and mathematical modeling, symposium participants revealed mechanisms underlying cells' behavior, a few of which we highlight here. Shape, adhesion, and movements of cells can be modulated over the course of evolution to alter adult body-plans and a major theme explored during the symposium was the role of actomyosin in coordinating diverse behaviors of cells underlying morphogenesis in a myriad of contexts. Uncovering whether conserved or divergent genetic mechanisms guide the contractility of actomyosin in these systems will be crucial to understanding the evolution of the body-plans of animals from a cellular perspective. Many speakers presented research describing developmental phenomena in which cell division and tissue growth can control the form of the adult, and other presenters shared work on studying cell-fate specification, an important source of novelty in animal body-plans. Participants also presented studies of regeneration in annelids, flatworms, acoels, and cnidarians, and provided a unifying view of the regulation of cellular behavior during different life-history stages. Additionally, several presentations highlighted technological advances that glean mechanistic insights from new and emerging model systems, thereby providing the phylogenetic breadth so essential for studying animal evolution. Thus, we propose that an explicit study of cellular phenomena is now possible for a wide range of taxa, and that it will be highly informative for understanding the evolution of animal body-plans.
成年动物的形态是由胚胎发育过程中细胞的集体行为塑造而成的。为了理解驱动动物身体结构分化的力量,进化发育生物学主要聚焦于研究发育过程中起作用的基因网络。然而,对于这些网络如何在细胞水平上调节特征,如细胞的形状、极性或迁移,人们了解得还较少。我们为2014年综合与比较生物学学会会议组织了“动物身体结构进化的细胞视角”研讨会,明确目标是将研究不同动物类群胚胎发育细胞生物学的研究人员聚集在一起。通过使用包括实时成像、单细胞分析和数学建模在内的一系列广泛的成熟和新兴技术,研讨会参与者揭示了细胞行为背后的机制,我们在此突出其中的一些机制。细胞的形状、黏附力和运动在进化过程中可以被调节,从而改变成年动物的身体结构,研讨会期间探讨的一个主要主题是肌动球蛋白在协调细胞在无数情况下形态发生基础的多种行为中的作用。揭示在这些系统中保守或不同的遗传机制是否指导肌动球蛋白的收缩性,对于从细胞角度理解动物身体结构的进化至关重要。许多发言人展示了描述发育现象的研究,其中细胞分裂和组织生长可以控制成年动物的形态,其他发言人分享了关于研究细胞命运特化的工作,这是动物身体结构新奇性的一个重要来源。参与者还展示了对环节动物、扁形动物、无肠动物和刺胞动物再生的研究,并提供了不同生命史阶段细胞行为调控的统一观点。此外,一些报告强调了从新出现的模型系统中获取机制性见解的技术进步,从而提供了研究动物进化所必需的系统发育广度。因此,我们认为现在有可能对广泛的类群进行细胞现象的明确研究,这对于理解动物身体结构的进化将具有很高的参考价值。