Lachance Mathieu, Longtin André, Morris Catherine E, Yu Na, Joós Béla
Département de physique, Cégep de l'Outaouais, 820 de la Gappe, Gatineau, Québec, J8T 7T7, Canada,
J Comput Neurosci. 2014 Dec;37(3):523-31. doi: 10.1007/s10827-014-0521-9. Epub 2014 Aug 12.
Neural tissue injuries render voltage-gated Na+ channels (Nav) leaky, thereby altering excitability, disrupting propagation and causing neuropathic pain related ectopic activity. In both recombinant systems and native excitable membranes, membrane damage causes the kinetically-coupled activation and inactivation processes of Nav channels to undergo hyperpolarizing shifts. This damage-intensity dependent change, called coupled left-shift (CLS), yields a persistent or "subthreshold" Nav window conductance. Nodes of Ranvier simulations involving various degrees of mild CLS showed that, as the system's channel/pump fluxes attempt to re-establish ion homeostasis, the CLS elicits hyperexcitability, subthreshold oscillations and neuropathic type action potential (AP) bursts. CLS-induced intermittent propagation failure was studied in simulations of stimulated axons, but pump contributions were ignored, leaving open an important question: does mild-injury (small CLS values, pumps functioning well) render propagation-competent but still quiescent axons vulnerable to further impairments as the system attempts to cope with its normal excitatory inputs? We probe this incipient diffuse axonal injury scenario using a 10-node myelinated axon model. Fully restabilized nodes with mild damage can, we show, become ectopic signal generators ("ectopic nodes") because incoming APs stress Na+ / K+ gradients, thereby altering spike thresholds. Comparable changes could contribute to acquired sodium channelopathies as diverse as epileptic phenomena and to the neuropathic amplification of normally benign sensory inputs. Input spike patterns, we found, propagate with good fidelity through an ectopically firing site only when their frequencies exceed the ectopic frequency. This "propagation window" is a robust phenomenon, occurring despite Gaussian noise, large jitter and the presence of several consecutive ectopic nodes.
神经组织损伤会使电压门控钠通道(Nav)出现渗漏,从而改变兴奋性、破坏信号传导并引发与神经性疼痛相关的异位活动。在重组系统和天然可兴奋膜中,膜损伤都会导致Nav通道的动力学耦合激活和失活过程发生超极化偏移。这种与损伤强度相关的变化,称为耦合左移(CLS),会产生持续的或“阈下”的Nav窗口电导。对涉及不同程度轻度CLS的郎飞结模拟显示,当系统的通道/泵通量试图重新建立离子稳态时,CLS会引发兴奋性过高、阈下振荡和神经性动作电位(AP)爆发。在受刺激轴突的模拟中研究了CLS诱导的间歇性传导失败,但忽略了泵的作用,这就留下了一个重要问题:轻度损伤(CLS值小,泵功能良好)是否会使具有传导能力但仍处于静息状态的轴突在系统试图应对其正常兴奋性输入时更容易受到进一步损害?我们使用一个10节点有髓轴突模型来探究这种早期弥漫性轴突损伤情况。我们发现,具有轻度损伤的完全重新稳定的节点可能会成为异位信号发生器(“异位节点”),因为传入的动作电位会使钠/钾梯度受到压力,从而改变动作电位阈值。类似的变化可能导致各种后天性钠通道病,如癫痫现象,以及正常良性感觉输入的神经性放大。我们发现,只有当输入动作电位模式的频率超过异位频率时,它们才能以良好的保真度通过异位放电部位进行传导。这种“传导窗口”是一种稳健的现象,尽管存在高斯噪声、大抖动以及几个连续的异位节点,它仍然会出现。