Nam Seung-Jeung, Kim Young-Ok, Ko Tae-Kyung, Kang Jin-Ku, Chun Kwang-Hoon, Auh Joong-Hyuck, Lee Chul-Soon, Lee In-Kyu, Park Sunghoon, Oh Byung-Chul
Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine, Incheon 406-840, Republic of Korea.
J Microbiol Biotechnol. 2014 Oct;24(10):1413-20. doi: 10.4014/jmb.1407.07063.
Phytate is an antinutritional factor that impacts the bioavailability of essential minerals such as Ca(2+), Mg(2+), Mn(2+), Zn(2+), and Fe(2+) by forming insoluble mineral-phytate salts. These insoluble mineral-phytate salts are hydrolyzed rarely by monogastric animals, because they lack the hydrolyzing phytases and thus excrete the majority of them. The β-propeller phytases (BPPs) hydrolyze these insoluble mineral-phytate salts efficiently. In this study, we cloned a novel BPP gene from a marine Pseudomonas sp. This Pseudomonas BPP gene (PsBPP) had low sequence identity with other known phytases and contained an extra internal repeat domain (residues 24-279) and a typical BPP domain (residues 280-634) at the C-terminus. Structurebased sequence alignment suggested that the N-terminal repeat domain did not possess the active-site residues, whereas the C-terminal BPP domain contained multiple calcium-binding sites, which provide a favorable electrostatic environment for substrate binding and catalytic activity. Thus, we overexpressed the BPP domain from Pseudomonas sp. to potentially hydrolyze insoluble mineral-phytate salts. Purified recombinant PsBPP required Ca(2+) or Fe(2+) for phytase activity, indicating that PsBPP hydrolyzes insoluble Fe(2+)-phytate or Ca2+-phytate salts. The optimal temperature and pH for the hydrolysis of Ca(2+)-phytate by PsBPP were 50°C and 6.0, respectively. Biochemical and kinetic studies clearly showed that PsBPP efficiently hydrolyzed Ca(2+)-phytate salts and yielded myo-inositol 2,4,6-trisphosphate and three phosphate groups as final products. Finally, we showed that PsBPP was highly effective for hydrolyzing rice bran with high phytate content. Taken together, our results suggest that PsBPP has great potential in the animal feed industry for reducing phytates.
植酸盐是一种抗营养因子,它通过形成不溶性的矿物 - 植酸盐来影响必需矿物质如Ca(2+)、Mg(2+)、Mn(2+)、Zn(2+)和Fe(2+)的生物利用度。这些不溶性的矿物 - 植酸盐很少被单胃动物水解,因为它们缺乏水解植酸酶,因此大部分会被排出体外。β - 螺旋桨植酸酶(BPPs)能有效水解这些不溶性的矿物 - 植酸盐。在本研究中,我们从一株海洋假单胞菌中克隆了一个新的BPP基因。这个假单胞菌BPP基因(PsBPP)与其他已知植酸酶的序列同一性较低,并且在C端包含一个额外的内部重复结构域(第24 - 279位氨基酸残基)和一个典型的BPP结构域(第280 - 634位氨基酸残基)。基于结构的序列比对表明,N端重复结构域不具备活性位点残基,而C端BPP结构域包含多个钙结合位点,这为底物结合和催化活性提供了有利的静电环境。因此,我们对假单胞菌的BPP结构域进行了过表达,以潜在地水解不溶性的矿物 - 植酸盐。纯化后的重组PsBPP的植酸酶活性需要Ca(2+)或Fe(2+),这表明PsBPP能水解不溶性的Fe(2+) - 植酸盐或Ca2+ - 植酸盐。PsBPP水解Ca(2+) - 植酸盐的最佳温度和pH分别为50°C和6.0。生化和动力学研究清楚地表明,PsBPP能有效水解Ca(2+) - 植酸盐,并最终产生肌醇2,4,6 - 三磷酸和三个磷酸基团。最后,我们表明PsBPP在水解高植酸含量的米糠方面非常有效。综上所述,我们的结果表明PsBPP在动物饲料工业中降低植酸盐方面具有巨大潜力。