Wang Bin, Huang Hongliang, Lv Xiu-Liang, Xie Yabo, Li Ming, Li Jian-Rong
Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, Beijing University of Technology , Beijing 100124, P. R. China.
Inorg Chem. 2014 Sep 2;53(17):9254-9. doi: 10.1021/ic5013473. Epub 2014 Aug 12.
Introducing functional groups into pores of metal-organic frameworks (MOFs) through ligand modification provides an efficacious approach for tuning gas adsorption and separation performances of this type of novel porous material. In this work, two UiO-67 analogues, [Zr6O4(OH)4(FDCA)6] (BUT-10) and [Zr6O4(OH)4(DTDAO)6] (BUT-11), with functionalized pore surfaces and high stability were synthesized from two functional ligands, 9-fluorenone-2,7-dicarboxylic acid (H2FDCA) and dibenzo[b,d]thiophene-3,7-dicarboxylic acid 5,5-dioxide (H2DTDAO), respectively, and structurally determined by single-crystal X-ray diffraction. Notwithstanding skeleton bend of the two ligands relative to the linear 4,4'-biphenyldicarboxylic acid in UiO-67, the two MOFs have structures similar to that of UiO-67, with only lowered symmetry in their frameworks. Attributed to these additional functional groups (carbonyl and sulfone, respectively) in the ligands, BUT-10 and -11 show enhanced CO2 adsorption and separation selectivities over N2 and CH4, in spite of decreased pore sizes and surface areas compared with UiO-67. At 298 K and 1 atm, the CO2 uptake is 22.9, 50.6, and 53.5 cm(3)/g, and the infinite dilution selectivities of CO2/CH4 are 2.7, 5.1, and 9.0 and those of CO2/N2 are 9.4, 18.6, and 31.5 for UiO-67, BUT-10, and BUT-11, respectively. The selectivities of CO2/CH4 and CO2/N2 are thus enhanced 1.9 and 2.0 times in BUT-10 and 3.3 and 3.4 times in BUT-11, respectively, on the basis of UiO-67. The adsorption mechanism of CO2 in BUT-11 has also been explored through computational simulations. The results show that CO2 molecules locate around the sulfone groups in pore surfaces of BUT-11, verifying at the molecular level that sulfone groups significantly increase the affinity toward CO2 molecules of the framework. This provides thus an efficient strategy for the design of CO2 capture materials.
通过配体修饰将官能团引入金属有机框架(MOF)的孔中,为调节这类新型多孔材料的气体吸附和分离性能提供了一种有效的方法。在本工作中,分别由两种功能性配体9-芴酮-2,7-二羧酸(H2FDCA)和二苯并[b,d]噻吩-3,7-二羧酸5,5-二氧化物(H2DTDAO)合成了两种具有功能化孔表面且稳定性高的UiO-67类似物,[Zr6O4(OH)4(FDCA)6](BUT-10)和[Zr6O4(OH)4(DTDAO)6](BUT-11),并通过单晶X射线衍射确定了其结构。尽管这两种配体相对于UiO-67中的线性4,4'-联苯二甲酸存在骨架弯曲,但这两种MOF具有与UiO-67相似的结构,只是其骨架对称性有所降低。由于配体中存在这些额外的官能团(分别为羰基和砜基),尽管与UiO-67相比孔径和表面积减小,但BUT-10和-11对CO2的吸附和对N2及CH4的分离选择性增强。在298 K和1 atm下,UiO-67、BUT-10和BUT-11的CO2吸附量分别为22.9、50.6和53.5 cm(3)/g,CO2/CH4的无限稀释选择性分别为2.7、5.1和9.0,CO2/N2的无限稀释选择性分别为9.4、18.6和31.5。因此,基于UiO-67,BUT-10中CO2/CH4和CO2/N2的选择性分别提高了1.9倍和2.0倍,BUT-11中分别提高了3.3倍和3.4倍。还通过计算模拟探索了CO2在BUT-11中的吸附机理。结果表明,CO2分子位于BUT-11孔表面的砜基周围,在分子水平上验证了砜基显著增加了框架对CO2分子的亲和力。这从而为设计CO2捕获材料提供了一种有效策略。