Logvinenko E M, Shavlovskiĭ G M, Zakal'skiĭ A E, Kontorovskaia N Iu
Ukr Biokhim Zh (1978). 1989 Jul-Aug;61(4):47-54.
2,5-Diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been isolated from cells of Pichia guilliermondii and subjected to 20-fold purification by treating extracts with streptomycin sulphate, frationating proteins (NH4)2SO4 at 45-75% of saturation and chromatography on blue sepharose CL-6B. The use of gel filtration through Sephadex G-150 and chromatography on DEAE-cellulose proved to be less effective for the enzyme purification. It has been established that it is 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5-phosphate but not its dephosphorylated form that is the substrate of the given reductase; Km is equal to 7.10(-5) M. The reaction proceeds in the presence of NADPH or NADH. The enzyme affinity to NADPH (Km = 4.7.10(-5) M) is approximately one order higher than that to NADPH (Km = 5.5.10(-4) M). The enzyme manifests the optimum of action at pH 7.2 and the temperature of 37 degrees C; the molecular weight is 140 kD. EDTA as well as flavins in the concentration of 1.10(-3) M exert no effect on the reductase activity. The enzyme is labile at 4 degrees C and is inactivated in the frozen state at -15 degrees C. The 2.5-diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been also revealed in Torulopsis candida, Debaryomyces klöckeri, Schwanniomyces occidentalis, Eremothecium ashbyii (flavinogenic species) and Candida utilis. Aspergillus nidulans, Neurospora crassa (nonflavinogenic species). The synthesis of this enzyme contrary to other enzymes of the riboflavin biosynthesis is not regulated in flavinogenic yeast by iron ions.