Narang Deepak, Kerr Paul M, Lunn Stephanie E, Beaudry Rhys, Sigurdson Julie, Lalies Margaret D, Hudson Alan L, Light Peter E, Holt Andrew, Plane Frances
Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada.
Department of Pharmacology (D.N., P.M.K., S.E.L., R.B., J.S., M.D.L., A.L.H., P.E.L., A.H., F.P.), and Cardiovascular Research Centre (P.E.L., F.P.), University of Alberta, Edmonton, Alberta, Canada
J Pharmacol Exp Ther. 2014 Oct;351(1):164-71. doi: 10.1124/jpet.114.216523. Epub 2014 Aug 12.
The trace amine β-phenylethylamine (PEA) is normally present in the body at low nanomolar concentrations but can reach micromolar levels after ingestion of drugs that inhibit monoamine oxidase and primary amine oxidase. In vivo, PEA elicits a robust pressor response, but there is no consensus regarding the underlying mechanism, with both vasodilation and constriction reported in isolated blood vessels. Using functional and biochemical approaches, we found that at low micromolar concentrations PEA (1-30 μM) enhanced nerve-evoked vasoconstriction in the perfused rat mesenteric bed but at a higher concentration (100 μM) significantly inhibited these responses. The α2-adrenoceptor antagonist rauwolscine (1 µM) also enhanced nerve-mediated vasoconstriction, but in the presence of both rauwolscine (1 µM) and PEA (30 µM) together, nerve-evoked responses were initially potentiated and then showed time-dependent rundown. PEA (10 and 100 μM) significantly increased noradrenaline outflow from the mesenteric bed as determined by high-pressure liquid chromatography coupled with electrochemical detection. In isolated endothelium-denuded arterial segments, PEA (1 µM to 1 mM) caused concentration-dependent reversal of tone elicited by the α1-adrenoceptor agonists noradrenaline (EC50 51.69 ± 10.8 μM; n = 5), methoxamine (EC50 68.21 ± 1.70 μM; n = 5), and phenylephrine (EC50 67.74 ± 16.72 μM; n = 5) but was ineffective against tone induced by prostaglandin F2 α or U46619 (9,11-dideoxy-9α,11α-methanoepoxyprostaglandin F2 α). In rat brain homogenates, PEA displaced binding of both [(3)H]prazosin (Ki ≈ 25 μM) and [(3)H]rauwolscine (Ki ≈ 1.2 μM), ligands for α1- and α2-adrenoceptors, respectively. These data provide the first demonstration that dual indirect sympathomimetic and α1-adrenoceptor blocking actions underlie the vascular effects of PEA in resistance arteries.
痕量胺β-苯乙胺(PEA)在体内通常以低纳摩尔浓度存在,但在摄入抑制单胺氧化酶和伯胺氧化酶的药物后,其浓度可达到微摩尔水平。在体内,PEA会引发强烈的升压反应,但对于其潜在机制尚无共识,在分离的血管中既有血管舒张也有血管收缩的报道。我们使用功能和生化方法发现,在低微摩尔浓度(1 - 30 μM)时,PEA可增强灌注大鼠肠系膜床中神经诱发的血管收缩,但在较高浓度(100 μM)时会显著抑制这些反应。α2 - 肾上腺素能受体拮抗剂育亨宾(1 μM)也增强了神经介导的血管收缩,但在育亨宾(1 μM)和PEA(30 μM)同时存在时,神经诱发的反应最初增强,随后呈现时间依赖性衰减。通过高压液相色谱与电化学检测联用测定,PEA(10和100 μM)显著增加了肠系膜床中去甲肾上腺素的流出量。在分离的去内皮动脉段中,PEA(1 μM至1 mM)导致由α1 - 肾上腺素能受体激动剂去甲肾上腺素(EC50 51.69 ± 10.8 μM;n = 5)、甲氧明(EC50 68.21 ± 1.70 μM;n = 5)和去氧肾上腺素(EC50 67.74 ± 16.72 μM;n = 5)引起的张力呈浓度依赖性逆转,但对前列腺素F2α或U46619(9,11 - 二脱氧 - 9α,11α - 甲氧基前列腺素F2α)诱导的张力无效。在大鼠脑匀浆中,PEA分别取代了α1 - 和α2 - 肾上腺素能受体配体[(3)H]哌唑嗪(Ki≈25 μM)和[(3)H]育亨宾(Ki≈1.2 μM)的结合。这些数据首次证明,双重间接拟交感神经作用和α1 - 肾上腺素能受体阻断作用是PEA对阻力动脉血管效应的基础。