Thomae Daniel, Sandfuchs Oliver, Brunner Robert
J Opt Soc Am A Opt Image Sci Vis. 2014 Jul 1;31(7):1436-44. doi: 10.1364/JOSAA.31.001436.
Fractional Talbot images of amplitude line gratings, with small opening slits compared to the period, are characterized by an integer multiple of the gratings' spatial frequency. We investigate the formation of fractional Talbot images analytically within a scalar framework and give a comprehensible insight into the paraxial limits involved. Particular attention is paid to nonparaxial effects on the intensity distribution at fractional Talbot planes and their lateral periodicities. We present a comparison between the measured intensity distributions and a numerical implementation of our analytical method. Both ways reveal the paraxial limits of frequency multiplication on fractional Talbot images. The use of fractional Talbot images for lithography results in ghost diffraction orders. We roughly estimate the ghost orders quantitatively with a simple numerical model for monochromatic and polychromatic illumination.
与周期相比具有小开口狭缝的振幅线光栅的分数塔尔博特图像,其特征在于光栅空间频率的整数倍。我们在标量框架内通过解析方法研究分数塔尔博特图像的形成,并对其中涉及的傍轴极限给出了清晰的见解。特别关注了分数塔尔博特平面上强度分布的非傍轴效应及其横向周期性。我们给出了测量强度分布与我们解析方法的数值实现之间的比较。两种方法都揭示了分数塔尔博特图像上频率倍增的傍轴极限。将分数塔尔博特图像用于光刻会产生鬼衍射级次。我们用一个简单的单色和多色照明数值模型对鬼级次进行了粗略的定量估计。