Van Stipdonk Michael J, Michelini Maria del Carmen, Plaviak Alexandra, Martin Dean, Gibson John K
Department of Chemistry and Biochemistry, Duquesne University , Pittsburgh, Pennsylvania 15282, United States.
J Phys Chem A. 2014 Sep 11;118(36):7838-46. doi: 10.1021/jp5066067. Epub 2014 Aug 21.
In a prior study [Van Stipdonk; et al. J. Phys. Chem. A 2006, 110, 959-970], electrospray ionization (ESI) was used to generate doubly charged complex ions composed of the uranyl ion and acetonitrile (acn) ligands. The complexes, general formula UO2(acn)n, n = 0-5, were isolated in an 3-D quadrupole ion-trap mass spectrometer to probe intrinsic reactions with H2O. Two general reaction pathways were observed: (a) the direct addition of one or more H2O ligands to the doubly charged complexes and (b) charge-exchange reactions. For the former, the intrinsic tendency to add H2O was dependent on the number and type of nitrile ligand. For the latter, charge exchange involved primarily the formation of uranyl hydroxide, UO2OH, presumably via a collision with gas-phase H2O and the elimination of a protonated nitrile ligand. Examination of general ion fragmentation patterns by collision-induced dissociation, however, was hindered by the pronounced tendency to generate hydrated species. In an update to this story, we have revisited the fragmentation of uranyl-acetonitrile complexes in a linear ion-trap (LIT) mass spectrometer. Lower partial pressures of adventitious H2O in the LIT (compared to the 3-D ion trap used in our previous study) minimized adduct formation and allowed access to lower uranyl coordination numbers than previously possible. We have now been able to investigate the fragmentation behavior of these complex ions completely, with a focus on tendency to undergo ligand elimination versus charge reduction reactions. CID can be used to drive ligand elimination to completion to furnish the bare uranyl dication, UO2(2+). In addition, fragmentation of UO2(acn) generated UO2(NC), which subsequently fragmented to furnish NUO(+). Formation of the nitrido by transfer of N from cyanide was confirmed using precursors labeled with (15)N. The observed formation of UO2(NC) and NUO(+) was modeled by density functional theory.
在之前的一项研究中[范·斯蒂普登克等人;《物理化学杂志A》2006年,第110卷,959 - 970页],电喷雾电离(ESI)被用于生成由铀酰离子和乙腈(acn)配体组成的双电荷复合离子。通式为UO₂(acn)ₙ(n = 0 - 5)的这些配合物,在三维四极杆离子阱质谱仪中被分离出来,以探究与H₂O的固有反应。观察到两种一般反应途径:(a)一个或多个H₂O配体直接加成到双电荷配合物上,以及(b)电荷交换反应。对于前者,添加H₂O的固有倾向取决于腈配体的数量和类型。对于后者,电荷交换主要涉及铀酰氢氧化物UO₂OH的形成,推测是通过与气相H₂O碰撞并消除一个质子化的腈配体。然而,通过碰撞诱导解离对一般离子碎裂模式的研究受到生成水合物种的明显倾向的阻碍。在这个故事的后续研究中,我们重新审视了线性离子阱(LIT)质谱仪中铀酰 - 乙腈配合物的碎裂情况。LIT中偶然存在的H₂O的较低分压(与我们之前研究中使用的三维离子阱相比)使加合物形成最小化,并使得能够获得比以前更低的铀酰配位数。我们现在已经能够全面研究这些复合离子的碎裂行为,重点关注发生配体消除与电荷减少反应的倾向。碰撞诱导解离(CID)可用于促使配体消除完全进行,以提供裸铀酰二价阳离子UO₂(²⁺)。此外,UO₂(acn)的碎裂生成了UO₂(NC),其随后进一步碎裂生成NUO(⁺)。使用用¹⁵N标记的前体证实了通过氰化物转移N形成氮化物。通过密度泛函理论对观察到的UO₂(NC)和NUO(⁺)的形成进行了建模。