Gilson Angélique, Barthes Laure, Delpierre Nicolas, Dufrêne Éric, Fresneau Chantal, Bazot Stéphane
Université Paris-Sud, UMR 8079, Laboratoire Ecologie Systématique et Evolution, Orsay, F-91405 Orsay, France CNRS, UMR 8079, Laboratoire Ecologie Systématique et Evolution, Orsay, F-91405 Orsay, France AgroParisTech, UMR 8079, Laboratoire Ecologie Systématique et Evolution, F-75231 Paris, France.
Université Paris-Sud, UMR 8079, Laboratoire Ecologie Systématique et Evolution, Orsay, F-91405 Orsay, France CNRS, UMR 8079, Laboratoire Ecologie Systématique et Evolution, Orsay, F-91405 Orsay, France AgroParisTech, UMR 8079, Laboratoire Ecologie Systématique et Evolution, F-75231 Paris, France
Tree Physiol. 2014 Jul;34(7):716-29. doi: 10.1093/treephys/tpu060.
Forest productivity declines with tree age. This decline may be due to changes in metabolic functions, resource availability and/or changes in resource allocation (between growth, reproduction and storage) with tree age. Carbon and nitrogen remobilization/storage processes are key to tree growth and survival. However, studies of the effects of tree age on these processes are scarce and have not yet considered seasonal carbon and nitrogen variations in situ. This study was carried out in a chronosequence of sessile oak (Quercus petraea Liebl.) for 1 year to survey the effects of tree age on the seasonal changes of carbon and nitrogen compounds in several tree compartments, focusing on key phenological stages. Our results highlight a general pattern of carbon and nitrogen function at all tree ages, with carbon reserve remobilization at budburst for growth, followed by carbon reserve formation during the leafy season and carbon reserve use during winter for maintenance. The variation in concentrations of nitrogen compounds shows less amplitude than that of carbon compounds. Storage as proteins occurs later, and mainly depends on leaf nitrogen remobilization and root uptake in autumn. We highlight several differences between tree age groups, in particular the loss of carbon storage function of fine and medium-sized roots with tree ageing. Moreover, the pattern of carbon compound accumulation in branches supports the hypothesis of a preferential allocation of carbon towards growth until the end of wood formation in juvenile trees, at the expense of the replenishment of carbon stores, while mature trees start allocating carbon to storage right after budburst. Our results demonstrate that at key phenological stages, physiological and developmental functions differ with tree age, and together with environmental conditions, influence the carbon and nitrogen concentration variations in sessile oaks.
森林生产力随树龄增长而下降。这种下降可能是由于代谢功能的变化、资源可用性的变化和/或随着树龄增长资源分配(在生长、繁殖和储存之间)的变化。碳和氮的再分配/储存过程是树木生长和存活的关键。然而,关于树龄对这些过程影响的研究很少,且尚未考虑原位碳和氮的季节性变化。本研究在无梗花栎(Quercus petraea Liebl.)的时间序列中进行了1年,以调查树龄对几个树木部分碳和氮化合物季节性变化的影响,重点关注关键物候阶段。我们的结果突出了所有树龄阶段碳和氮功能的一般模式,即芽萌动时碳储备再分配用于生长,随后在叶生季节形成碳储备,冬季利用碳储备维持生命活动。氮化合物浓度的变化幅度小于碳化合物。以蛋白质形式储存出现得较晚,主要取决于秋季叶片氮的再分配和根系吸收。我们强调了不同树龄组之间的几个差异,特别是随着树龄增长,细根和中根的碳储存功能丧失。此外,树枝中碳化合物积累的模式支持了这样一种假设,即幼树在木材形成结束前优先将碳分配用于生长,以牺牲碳储存的补充为代价,而成熟树木在芽萌动后就开始将碳分配用于储存。我们的结果表明,在关键物候阶段,生理和发育功能因树龄而异,并与环境条件一起影响无梗花栎中碳和氮浓度的变化。