Suppr超能文献

一维硬心任意子在淬火后的非平衡动力学:单粒子可观测量的完全弛豫。

Nonequilibrium dynamics of one-dimensional hard-core anyons following a quench: complete relaxation of one-body observables.

机构信息

The University of Queensland, School of Mathematics and Physics, Brisbane, Queensland 4072, Australia and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA.

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA and Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Phys Rev Lett. 2014 Aug 1;113(5):050601. doi: 10.1103/PhysRevLett.113.050601. Epub 2014 Jul 29.

Abstract

We demonstrate the role of interactions in driving the relaxation of an isolated integrable quantum system following a sudden quench. We consider a family of integrable hard-core lattice anyon models that continuously interpolates between noninteracting spinless fermions and strongly interacting hard-core bosons. A generalized Jordan-Wigner transformation maps the entire family to noninteracting fermions. We find that, aside from the singular free-fermion limit, the entire single-particle density matrix and, therefore, all one-body observables relax to the predictions of the generalized Gibbs ensemble (GGE). This demonstrates that, in the presence of interactions, correlations between particles in the many-body wave function provide the effective dissipation required to drive the relaxation of all one-body observables to the GGE. This relaxation does not depend on translational invariance or the tracing out of any spatial domain of the system.

摘要

我们展示了相互作用在驱动孤立可积量子系统在突然淬火后的弛豫中的作用。我们考虑了一类可积硬芯任意子模型族,该模型族在非相互作用的无自旋费米子和强相互作用的硬芯玻色子之间连续插值。广义 Jordan-Wigner 变换将整个家族映射到非相互作用的费米子。我们发现,除了奇异的自由费米子极限外,整个单粒子密度矩阵,因此,所有的单粒子可观测量都收敛到广义吉布斯系综(GGE)的预测。这表明,在存在相互作用的情况下,多体波函数中粒子之间的相关性提供了有效耗散,从而使所有单粒子可观测量弛豫到 GGE。这种弛豫不依赖于平移不变性或系统任何空间域的迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验