Suppr超能文献

基于分子对接的柯里拉京 A-4 类似物的 3D-QSAR 研究

3D-QSAR Study of Combretastatin A-4 Analogs Based on Molecular Docking.

作者信息

Jin Yinghua, Qi Ping, Wang Zhiwei, Shen Qirong, Wang Jian, Zhang Weige, Song Hongrui

机构信息

Department of Pharmacy, General Hospital of Beijing Military Command. Nanmencang No.5, Dongcheng District, Beijing 100700, China.

School of Pharmaceutical Engineering, Shenyang Pharmaceutical University. No.103, Wenhua Road, Shenhe District, Shenyang 110016, Liaoning, China.

出版信息

Molecules. 2011 Aug 8;16(8):6684-700. doi: 10.3390/molecules16086684.

Abstract

Combretastatin A-4 (CA-4), its analogues and their excellent antitumoral and antivascular activities, have attracted considerable interest of medicinal chemists. In this article, a docking simulation was used to identify molecules having the same binding mode as the lead compound, and 3D-QSAR models had been built by using CoMFA based on docking. As a result, these studies indicated that the QSAR models were statistically significant with high predictabilities (CoMFA model, q2 = 0.786, r2 = 0.988). Our models may offer help to better comprehend the structure-activity relationships for this class of compounds and also facilitate the design of novel inhibitors with good chemical diversity.

摘要

康普瑞他汀A-4(CA-4)及其类似物具有出色的抗肿瘤和抗血管活性,已引起药物化学家的广泛关注。在本文中,通过对接模拟来识别与先导化合物具有相同结合模式的分子,并基于对接结果利用比较分子场分析法(CoMFA)构建了三维定量构效关系(3D-QSAR)模型。结果表明,这些研究中的QSAR模型具有统计学意义且预测能力较高(CoMFA模型,交叉验证系数q2 = 0.786,相关系数r2 = 0.988)。我们的模型可能有助于更好地理解这类化合物的构效关系,也有助于设计具有良好化学多样性的新型抑制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f208/6264539/04d739150605/molecules-16-06684-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验