Suppr超能文献

衰老与疾病中的线粒体动力学

Mitochondrial dynamics in aging and disease.

作者信息

Bereiter-Hahn Jürgen

机构信息

Institute for Cell Biology and Neurosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.

出版信息

Prog Mol Biol Transl Sci. 2014;127:93-131. doi: 10.1016/B978-0-12-394625-6.00004-0.

Abstract

Mitochondria are self-replicating organelles but nevertheless strongly depend on supply coded in nuclear genes. They serve many physiological demands in living cells. Supply of the cytoplasm with ATP and engagement in Ca(2+) regulation belong to the main functions of mitochondria. In large eukaryotic cells, in particular in neurons, with their long dendrites and axons, mitochondria have to move to the sites of their action. This trafficking involves several motor molecules and mechanisms to sense the sites of requirements of mitochondria. With aging and as a consequence of some diseases, mitochondrial components may be rendered dysfunctional, and mtDNA mutations arise during the course of replication and by the action of reactive oxygen species. Mutants in motor molecules engaged in trafficking and in the machinery of fusion and fission are causing severe deficiencies on the cellular level; they support neurodegeneration and, thus, cause many diseases. Frequent fusion and fission events mediate the elimination of impaired parts from mitochondria which finally will be degraded by autophagosomes. Extensive fusion provides a basis for functional complementation. Mobility of proteins and small molecules within the mitochondria is necessary to reach the functional goals of fusion and fission, although cristae and a large fraction of proteins of the respiratory complexes proved to be stable for hours after fusion and perform slow exchange of material.

摘要

线粒体是自我复制的细胞器,但在很大程度上依赖于核基因编码的供给。它们满足活细胞中的许多生理需求。为细胞质提供ATP以及参与Ca(2+)调节属于线粒体的主要功能。在大型真核细胞中,特别是在具有长树突和轴突的神经元中,线粒体必须移动到其作用位点。这种运输涉及几种运动分子和感知线粒体需求位点的机制。随着衰老以及某些疾病的影响,线粒体成分可能会功能失调,并且线粒体DNA突变会在复制过程中以及活性氧的作用下出现。参与运输以及融合和裂变机制的运动分子突变会在细胞水平上导致严重缺陷;它们会促进神经退行性变,从而引发许多疾病。频繁的融合和裂变事件介导了线粒体受损部分的清除,这些受损部分最终将被自噬体降解。广泛的融合为功能互补提供了基础。尽管嵴和呼吸复合物的大部分蛋白质在融合后数小时内被证明是稳定的并且进行缓慢的物质交换,但线粒体内部蛋白质和小分子的流动性对于实现融合和裂变的功能目标是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验