Eryilmaz Elif, Ahrndt Sebastian, Fähndrich Johannes, Albayrak Sahin
DAI Lab, Technische Universität Berlin, Berlin, Germany.
Stud Health Technol Inform. 2014;205:398-402.
This work presents a novel approach for combining multiple Electronic Patient Records (EPRs) to a self-learning fall risk assessment tool. This tool is used by a new type of home-visiting nurses to track the fall risk of their patients. In order to provide personalized healthcare for elderly people, we combine multiple EPRs using an agent-based architecture, where each patient is represented by an associated agent. The patient agents are enabled to negotiate about possible fallrisk indicators recognized in the specific patient population under care. We use distributed information fusion and opinion aggregation techniques to elaborate new fall-risk indicators and in consequence to adapt the fall risk assessment tool.
这项工作提出了一种将多个电子病历(EPR)整合到一个自学习跌倒风险评估工具中的新方法。这种工具被一种新型的上门护士用于跟踪其患者的跌倒风险。为了为老年人提供个性化医疗保健,我们使用基于智能体的架构来整合多个电子病历,其中每个患者由一个相关的智能体表示。患者智能体能够就特定护理患者群体中识别出的可能的跌倒风险指标进行协商。我们使用分布式信息融合和意见聚合技术来精心制定新的跌倒风险指标,从而调整跌倒风险评估工具。