Suppr超能文献

金属感知的特异性:枯草芽孢杆菌中的铁和锰稳态

Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis.

作者信息

Helmann John D

机构信息

From the Department of Microbiology, Cornell University, Ithaca, New York 14853-8101

出版信息

J Biol Chem. 2014 Oct 10;289(41):28112-20. doi: 10.1074/jbc.R114.587071. Epub 2014 Aug 26.

Abstract

Metalloregulatory proteins allow cells to sense metal ions and appropriately adjust the expression of metal uptake, storage, and efflux pathways. Bacillus subtilis provides a model for the coordinate regulation of iron and manganese homeostasis that involves three key regulators: Fur senses iron sufficiency, MntR senses manganese sufficiency, and PerR senses the intracellular Fe/Mn ratio. Here, I review the structural and physiological bases of selective metal perception, the effects of non-cognate metals, and mechanisms that may serve to coordinate iron and manganese homeostasis.

摘要

金属调节蛋白使细胞能够感知金属离子,并相应地调节金属摄取、储存和外排途径的表达。枯草芽孢杆菌为铁和锰稳态的协调调节提供了一个模型,该模型涉及三个关键调节因子:Fur感知铁的充足程度,MntR感知锰的充足程度,PerR感知细胞内铁/锰比例。在此,我综述了选择性金属感知的结构和生理基础、非同源金属的影响以及可能用于协调铁和锰稳态的机制。

相似文献

1
Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis.
J Biol Chem. 2014 Oct 10;289(41):28112-20. doi: 10.1074/jbc.R114.587071. Epub 2014 Aug 26.
3
Origins of specificity and cross-talk in metal ion sensing by Bacillus subtilis Fur.
Mol Microbiol. 2012 Dec;86(5):1144-55. doi: 10.1111/mmi.12049. Epub 2012 Oct 12.
4
Metal ion homeostasis in Bacillus subtilis.
Curr Opin Microbiol. 2005 Apr;8(2):188-95. doi: 10.1016/j.mib.2005.02.007.
6
Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators.
Mol Microbiol. 2003 Apr;48(2):495-506. doi: 10.1046/j.1365-2958.2003.03445.x.
7
Iron homeostasis in relies on three differentially expressed efflux systems.
Microbiology (Reading). 2023 Jan;169(1). doi: 10.1099/mic.0.001289.
8
Thematic minireview series: metals in biology 2014.
J Biol Chem. 2014 Oct 10;289(41):28094. doi: 10.1074/jbc.R114.607093. Epub 2014 Aug 26.

引用本文的文献

1
Microbial metal physiology: ions to ecosystems.
Nat Rev Microbiol. 2025 Jul 25. doi: 10.1038/s41579-025-01213-7.
2
Copper acquisition in Bacillus subtilis involves Cu(II) exchange between YcnI and YcnJ.
J Biol Chem. 2025 Jul 14;301(8):110480. doi: 10.1016/j.jbc.2025.110480.
3
Inhibitors of the Bacterioferritin Ferredoxin Complex Dysregulate Iron Homeostasis and Kill and Biofilm-Embedded Cells.
ACS Infect Dis. 2025 Jul 11;11(7):1983-1993. doi: 10.1021/acsinfecdis.5c00209. Epub 2025 Jun 9.
5
Compatibility of intracellular binding: Evolutionary design principles for metal sensors.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2427151122. doi: 10.1073/pnas.2427151122. Epub 2025 Apr 30.
6
Structural basis for transcription activation through cooperative recruitment of MntR.
Nat Commun. 2025 Mar 5;16(1):2204. doi: 10.1038/s41467-025-57412-6.
7
Metals in Motion: Understanding Labile Metal Pools in Bacteria.
Biochemistry. 2025 Jan 21;64(2):329-345. doi: 10.1021/acs.biochem.4c00726. Epub 2025 Jan 5.
8
Rho and riboswitch-dependent regulations of mntP gene expression evade manganese and membrane toxicities.
J Biol Chem. 2024 Dec;300(12):107967. doi: 10.1016/j.jbc.2024.107967. Epub 2024 Nov 5.
9
Calcium Rescues D39 Δ Manganese-Sensitive Growth Phenotype.
Microorganisms. 2024 Sep 1;12(9):1810. doi: 10.3390/microorganisms12091810.
10
PerR: A Peroxide Sensor Eliciting Metal Ion-dependent Regulation in Various Bacteria.
Mol Biotechnol. 2024 Sep 18. doi: 10.1007/s12033-024-01266-8.

本文引用的文献

2
The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators.
Arch Biochem Biophys. 2014 Mar 15;546:41-52. doi: 10.1016/j.abb.2014.01.029. Epub 2014 Feb 7.
3
Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions.
Biochemistry. 2014 Feb 4;53(4):766-76. doi: 10.1021/bi401056e. Epub 2014 Jan 21.
4
Manganese acquisition and homeostasis at the host-pathogen interface.
Front Cell Infect Microbiol. 2013 Dec 5;3:91. doi: 10.3389/fcimb.2013.00091. eCollection 2013.
5
Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans.
Front Cell Infect Microbiol. 2013 Nov 19;3:80. doi: 10.3389/fcimb.2013.00080. eCollection 2013.
6
Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.
Front Cell Infect Microbiol. 2013 Oct 2;3:59. doi: 10.3389/fcimb.2013.00059. eCollection 2013.
7
Physical characterization of the manganese-sensing pneumococcal surface antigen repressor from Streptococcus pneumoniae.
Biochemistry. 2013 Oct 29;52(43):7689-701. doi: 10.1021/bi401132w. Epub 2013 Oct 14.
8
A role for the DtxR family of metalloregulators in gram-positive pathogenesis.
Mol Oral Microbiol. 2014 Feb;29(1):1-10. doi: 10.1111/omi.12039. Epub 2013 Aug 22.
9
Single glutamate to aspartate mutation makes ferric uptake regulator (Fur) as sensitive to H2O2 as peroxide resistance regulator (PerR).
Angew Chem Int Ed Engl. 2013 Sep 23;52(39):10339-43. doi: 10.1002/anie.201304021. Epub 2013 Aug 12.
10
The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium.
Nat Rev Microbiol. 2013 Jul;11(7):443-54. doi: 10.1038/nrmicro3032. Epub 2013 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验