Foundation for Applied Molecular Evolution, P.O. Box 13174, Gainesville FL 32604, USA ; The Westheimer Institute for Science and Technology, 720 S. W. 2nd Avenue, Suites 201-208, Gainesville FL 32601, USA.
Foundation for Applied Molecular Evolution, P.O. Box 13174, Gainesville FL 32604, USA ; The Westheimer Institute for Science and Technology, 720 S. W. 2nd Avenue, Suites 201-208, Gainesville FL 32601, USA ; Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 17, Alachua, FL 32615, USA.
Beilstein J Org Chem. 2014 Aug 11;10:1826-33. doi: 10.3762/bjoc.10.192. eCollection 2014.
Synthetic biologists wishing to self-assemble large DNA (L-DNA) constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson-Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS), and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting") software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology.
合成生物学家希望从自动化合成的小 DNA 片段中自组装大 DNA(L-DNA)构建体,需要可预测杂交的片段。这种可预测性很难用仅由四个标准核苷酸构建的核苷酸获得。天然 DNA 中强和弱的 G:C 和 A:T 对的奇特组合、这些对强度的上下文依赖性、与所需链间杂交竞争的单分子链折叠以及标准 DNA 可用的非 Watson-Crick 相互作用,都导致了这种不可预测性。原则上,通过增加寡核苷酸序列的信息密度,可以向遗传字母表中添加额外的核苷酸来提高自主 DNA 自组装的可预测性和可靠性。这些额外的核苷酸现在可作为人工扩展遗传信息系统(AEGIS)的一部分获得,并且现在有工具可在 PCR 扩增过程中从 AEGIS DNA 生成完全标准的 DNA。在这里,我们描述了 OligArch(意为“寡核苷酸设计”)软件,该软件允许合成生物学家从六字母和八字母 AEGIS 字母表中设计最佳自组装 DNA 构建体。该软件已被用于设计能够从 20 个或更多单链合成寡核苷酸自组装形成完整基因的寡核苷酸。因此,OligArch 是生物学快速和设计工程的可扩展和集成基础设施的关键要素。