Smith G J, Simonson J W, Orvis T, Marques C, Grose J E, Kistner-Morris J J, Wu L, Cho K, Kim H, Tanatar M A, Garlea V O, Prozorov R, Zhu Y, Aronson M C
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA.
J Phys Condens Matter. 2014 Sep 17;26(37):376002. doi: 10.1088/0953-8984/26/37/376002. Epub 2014 Aug 28.
We present a study of the crystal structure and physical properties of single crystals of a new Fe-based ternary compound, Zr2-xFe4Si16-y(x = 0.81, y = 6.06). Zr1.19Fe4Si9.94 is a layered compound, where stoichiometric β-FeSi2-derived slabs are separated by Zr-Si planes with substantial numbers of vacancies. High resolution transmission electron microscopy (HRTEM) experiments show that these Zr-Si layers consist of 3.5 nm domains where the Zr and Si vacancies are ordered within a supercell sixteen times the volume of the stoichiometric cell. Within these domains, the occupancies of the Zr and Si sites obey symmetry rules that permit only certain compositions, none of which by themselves reproduce the average composition found in x-ray diffraction experiments. Magnetic susceptibility and magnetization measurements reveal a small but appreciable number of magnetic moments that remain freely fluctuating to 1.8 K, while neutron diffraction confirms the absence of bulk magnetic order with a moment of 0.2μB or larger down to 1.5 K. Electrical resistivity measurements find that Zr1.19Fe4Si9.94 is metallic, and the modest value of the Sommerfeld coefficient of the specific heat γ = C/T suggests that quasi-particle masses are not particularly strongly enhanced. The onset of superconductivity at Tc ≃ 6 K results in a partial resistive transition and a small Meissner signal, although a bulk-like transition is found in the specific heat. Sharp peaks in the ac susceptibility signal the interplay of the normal skin depth and the London penetration depth, typical of a system in which nano-sized superconducting grains are separated by a non-superconducting host. Ultra low field differential magnetic susceptibility measurements reveal the presence of a surprisingly large number of trace magnetic and superconducting phases, suggesting that the Zr-Fe-Si ternary system could be a potentially rich source of new bulk superconductors.
我们展示了对一种新型铁基三元化合物Zr2-xFe4Si16-y(x = 0.81,y = 6.06)单晶的晶体结构和物理性质的研究。Zr1.19Fe4Si9.94是一种层状化合物,其中化学计量比的β-FeSi2衍生板由具有大量空位的Zr-Si平面分隔。高分辨率透射电子显微镜(HRTEM)实验表明,这些Zr-Si层由3.5 nm的畴组成,其中Zr和Si空位在比化学计量比晶胞体积大16倍的超晶胞内有序排列。在这些畴内,Zr和Si位点的占有率遵循对称规则,只允许某些组成,其中没有一个能单独重现X射线衍射实验中发现的平均组成。磁化率和磁化强度测量表明,有少量但可观的磁矩在1.8 K时仍自由波动,而中子衍射证实,在1.5 K以下不存在磁矩为0.2μB或更大的体磁有序。电阻率测量发现Zr1.19Fe4Si9.94是金属性的,比热的索末菲系数γ = C/T的适度值表明准粒子质量没有特别强烈的增强。在Tc≃6 K时超导的开始导致了部分电阻转变和小的迈斯纳信号,尽管在比热中发现了类似体相的转变。交流磁化率中的尖锐峰表明正常趋肤深度和伦敦穿透深度之间的相互作用,这是纳米尺寸超导晶粒被非超导主体分隔的系统的典型特征。超低场差分磁化率测量揭示了存在数量惊人的微量磁性和超导相,这表明Zr-Fe-Si三元体系可能是新的体超导材料的潜在丰富来源。