Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.
Phys Rev Lett. 2013 Mar 15;110(11):116802. doi: 10.1103/PhysRevLett.110.116802. Epub 2013 Mar 14.
We propose searching for Chern insulators by depositing atomic layers of elements with large spin-orbit coupling (e.g., Bi) on the surface of a magnetic insulator. We argue that such systems will typically have isolated surface bands with nonzero Chern numbers. If these overlap in energy, a metallic surface with large anomalous Hall conductivity will result; if not, a Chern-insulator state will typically occur. Thus, our search strategy reduces to looking for examples having the Fermi level in a global gap extending across the entire Brillouin zone. We verify this search strategy and identify several candidate systems by using first-principles calculations to compute the Chern number and anomalous Hall conductivity of a large number of such systems on MnTe, MnSe, and EuS surfaces. Our search reveals several promising Chern insulators with gaps of up to 140 meV.
我们提出通过在磁性绝缘体的表面沉积具有大自旋轨道耦合的原子层(例如 Bi)来寻找 Chern 绝缘体。我们认为,这样的系统通常具有具有非零 Chern 数的孤立表面能带。如果这些能带在能量上重叠,则会产生具有大反常 Hall 电导率的金属表面;如果不重叠,则通常会出现 Chern 绝缘态。因此,我们的搜索策略简化为寻找费米能级位于整个布里渊区跨越的全局间隙中的实例。我们通过使用第一性原理计算来验证这种搜索策略,并确定了 MnTe、MnSe 和 EuS 表面上许多此类系统的 Chern 数和反常 Hall 电导率,从而确定了几个候选系统。我们的搜索揭示了几个具有高达 140 meV 间隙的有前途的 Chern 绝缘体。