Suppr超能文献

存在自旋轨道耦合时玻色-爱因斯坦凝聚体的命运。

Fate of a Bose-Einstein condensate in the presence of spin-orbit coupling.

作者信息

Zhou Qi, Cui Xiaoling

机构信息

Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.

Institute for Advanced Study, Tsinghua University, Beijing 100084, China.

出版信息

Phys Rev Lett. 2013 Apr 5;110(14):140407. doi: 10.1103/PhysRevLett.110.140407.

Abstract

Intensive theoretical studies have recently predicted that a Bose-Einstein condensate will exhibit a variety of novel properties if spin-orbit coupling is present. However, an unambiguous fact has also been pointed out: Rashba coupling destroys a condensate of noninteracting bosons even in high dimensions. Therefore, a conceptually important question arises as to whether or not a condensate exists in the presence of interaction and a general type of spin-orbit coupling. Here we show that interaction qualitatively changes the ground state of bosons under Rashba spin-orbit coupling. Any infinitesimal repulsion forces bosons either to condense at one or two momentum states or to form a superfragmented state that is a superposition of infinite numbers of fragmented condensates. The superfragmented state is unstable against the anisotropy of spin-orbit coupling in systems with large numbers of particles, leading to the revival of a condensate in current experiments.

摘要

近期深入的理论研究预测,如果存在自旋 - 轨道耦合,玻色 - 爱因斯坦凝聚体将展现出多种新奇特性。然而,一个明确的事实也已被指出:即便在高维度情况下,拉什巴耦合也会破坏无相互作用玻色子的凝聚态。因此,一个在概念上很重要的问题出现了,即在存在相互作用和一般类型的自旋 - 轨道耦合时,凝聚态是否存在。在此我们表明,相互作用定性地改变了拉什巴自旋 - 轨道耦合下玻色子的基态。任何无穷小的排斥力都会迫使玻色子要么在一个或两个动量态凝聚,要么形成一种超碎片化状态,即无限多个碎片化凝聚态的叠加。在具有大量粒子的系统中,超碎片化状态对于自旋 - 轨道耦合的各向异性是不稳定的,这导致了当前实验中凝聚态的重现。

相似文献

1
Fate of a Bose-Einstein condensate in the presence of spin-orbit coupling.
Phys Rev Lett. 2013 Apr 5;110(14):140407. doi: 10.1103/PhysRevLett.110.140407.
2
Meron ground state of Rashba spin-orbit-coupled dipolar bosons.
Phys Rev Lett. 2013 Nov 1;111(18):185303. doi: 10.1103/PhysRevLett.111.185303. Epub 2013 Oct 30.
3
Spin-orbit coupled spinor Bose-Einstein condensates.
Phys Rev Lett. 2010 Oct 15;105(16):160403. doi: 10.1103/PhysRevLett.105.160403. Epub 2010 Oct 13.
4
Emergence of chiral magnetism in spinor Bose-Einstein condensates with Rashba coupling.
Phys Rev Lett. 2012 May 4;108(18):185301. doi: 10.1103/PhysRevLett.108.185301. Epub 2012 Apr 30.
5
Condensation transition of ultracold Bose gases with Rashba spin-orbit coupling.
Phys Rev Lett. 2013 Feb 22;110(8):085304. doi: 10.1103/PhysRevLett.110.085304.
6
Stability of ultracold atomic Bose condensates with Rashba spin-orbit coupling against quantum and thermal fluctuations.
Phys Rev Lett. 2012 Jul 13;109(2):025301. doi: 10.1103/PhysRevLett.109.025301. Epub 2012 Jul 9.
7
Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate.
Sci Rep. 2015 Jan 26;5:8006. doi: 10.1038/srep08006.
8
Bose-Einstein condensates with spin-orbit interaction.
Phys Rev Lett. 2011 Oct 7;107(15):150403. doi: 10.1103/PhysRevLett.107.150403. Epub 2011 Oct 6.
9
Spin-orbit-coupled Bose-Einstein condensates.
Nature. 2011 Mar 3;471(7336):83-6. doi: 10.1038/nature09887.
10
Spin-orbit coupled Bose-Einstein condensate under rotation.
Phys Rev Lett. 2011 Nov 11;107(20):200401. doi: 10.1103/PhysRevLett.107.200401. Epub 2011 Nov 7.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验