Suppr超能文献

由双分散球体随机堆积形成的四面体胶体簇。

Tetrahedral colloidal clusters from random parking of bidisperse spheres.

作者信息

Schade Nicholas B, Holmes-Cerfon Miranda C, Chen Elizabeth R, Aronzon Dina, Collins Jesse W, Fan Jonathan A, Capasso Federico, Manoharan Vinothan N

机构信息

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Phys Rev Lett. 2013 Apr 5;110(14):148303. doi: 10.1103/PhysRevLett.110.148303. Epub 2013 Apr 4.

Abstract

Using experiments and simulations, we investigate the clusters that form when colloidal spheres stick irreversibly to--or "park" on--smaller spheres. We use either oppositely charged particles or particles labeled with complementary DNA sequences, and we vary the ratio α of large to small sphere radii. Once bound, the large spheres cannot rearrange, and thus the clusters do not form dense or symmetric packings. Nevertheless, this stochastic aggregation process yields a remarkably narrow distribution of clusters with nearly 90% tetrahedra at α = 2.45. The high yield of tetrahedra, which reaches 100% in simulations at α = 2.41, arises not simply because of packing constraints, but also because of the existence of a long-time lower bound that we call the "minimum parking" number. We derive this lower bound from solutions to the classic mathematical problem of spherical covering, and we show that there is a critical size ratio α(c) = (1 + sqrt[2]) ≈ 2.41, close to the observed point of maximum yield, where the lower bound equals the upper bound set by packing constraints. The emergence of a critical value in a random aggregation process offers a robust method to assemble uniform clusters for a variety of applications, including metamaterials.

摘要

通过实验和模拟,我们研究了胶态球体不可逆地附着于或“停靠”在较小球体上时形成的聚集体。我们使用带相反电荷的粒子或用互补DNA序列标记的粒子,并改变大、小球体半径之比α。一旦结合,大球体就无法重新排列,因此聚集体不会形成致密或对称的堆积。尽管如此,这种随机聚集过程产生了分布非常狭窄的聚集体,在α = 2.45时,近90%为四面体。四面体的高产率(在α = 2.41的模拟中达到100%)不仅源于堆积限制,还因为存在一个我们称为“最小停靠”数的长期下限。我们从经典的球面覆盖数学问题的解中推导出这个下限,并表明存在一个临界尺寸比α(c) = (1 + √2) ≈ 2.41,接近观察到的最大产率点,此时下限等于堆积限制所设定的上限。随机聚集过程中临界值的出现为包括超材料在内的各种应用提供了一种稳健的方法来组装均匀的聚集体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验