Hu Bo, Tu Yuhai
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA.
Phys Rev Lett. 2013 Apr 12;110(15):158703. doi: 10.1103/PhysRevLett.110.158703. Epub 2013 Apr 9.
The swimming of Escherichia coli is powered by its multiple flagellar motors. Each motor spins either clockwise or counterclockwise, under the control of an intracellular regulator, CheY-P. There can be two mechanisms (extrinsic and intrinsic) to coordinate the switching of bacterial motors. The extrinsic one arises from the fact that different motors in the same cell sense a common input (CheY-P) which fluctuates near the motors' response threshold. An alternative, intrinsic mechanism is direct motor-motor coupling which makes synchronized switching energetically favorable. Here, we develop simple models for both mechanisms and uncover their different hallmarks. A quantitative comparison to the recent experiments suggests that the direct coupling mechanism may be accountable for the observed sharp correlation between motors in a single Escherichia coli. Possible origins of this coupling (e.g., hydrodynamic interaction) are discussed.
大肠杆菌的游动由其多个鞭毛马达提供动力。在细胞内调节因子CheY-P的控制下,每个马达顺时针或逆时针旋转。协调细菌马达切换可能有两种机制(外在机制和内在机制)。外在机制源于这样一个事实,即同一细胞中的不同马达感知到一个共同输入(CheY-P),该输入在马达的响应阈值附近波动。另一种内在机制是马达-马达直接耦合,这使得同步切换在能量上更有利。在这里,我们为这两种机制开发了简单模型,并揭示了它们不同的特征。与最近的实验进行定量比较表明,直接耦合机制可能是单个大肠杆菌中观察到的马达之间强烈相关性的原因。我们还讨论了这种耦合的可能起源(例如,流体动力相互作用)。