Tulchinsky Alexander Y, Johnson Norman A, Watt Ward B, Porter Adam H
Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003
Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003 Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003 Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts 01003.
Genetics. 2014 Nov;198(3):1155-66. doi: 10.1534/genetics.114.168112. Epub 2014 Aug 29.
Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same phenotype through incompatible allelic combinations. We explore the evolutionary conditions that promote and constrain hybrid incompatibility in regulatory networks using a bioenergetic model (combining thermodynamics and kinetics) of transcriptional regulation, considering the bioenergetic basis of molecular interactions between transcription factors (TFs) and their binding sites. The bioenergetic parameters consider the free energy of formation of the bond between the TF and its binding site and the availability of TFs in the intracellular environment. Together these determine fractional occupancy of the TF on the promoter site, the degree of subsequent gene expression and in diploids, and the degree of dominance among allelic interactions. This results in a sigmoid genotype-phenotype map and fitness landscape, with the details of the shape determining the degree of bioenergetic evolutionary constraint on hybrid incompatibility. Using individual-based simulations, we subjected two allopatric populations to parallel directional or stabilizing selection. Misregulation of hybrid gene expression occurred under either type of selection, although it evolved faster under directional selection. Under directional selection, the extent of hybrid incompatibility increased with the slope of the genotype-phenotype map near the derived parental expression level. Under stabilizing selection, hybrid incompatibility arose from compensatory mutations and was greater when the bioenergetic properties of the interaction caused the space of nearly neutral genotypes around the stable expression level to be wide. F2's showed higher hybrid incompatibility than F1's to the extent that the bioenergetic properties favored dominant regulatory interactions. The present model is a mechanistically explicit case of the Bateson-Dobzhansky-Muller model, connecting environmental selective pressure to hybrid incompatibility through the molecular mechanism of regulatory divergence. The bioenergetic parameters that determine expression represent measurable properties of transcriptional regulation, providing a predictive framework for empirical studies of how phenotypic evolution results in epistatic incompatibility at the molecular level in hybrids.
初始物种之间的合子后隔离是由遗传分化导致的不相容性积累引起的。当表型由调控相互作用决定时,即使亲本群体中存在平行适应,杂种不相容性也可能进化,因为相互作用的基因可以通过不相容的等位基因组合产生相同的表型。我们使用转录调控的生物能量模型(结合热力学和动力学),考虑转录因子(TFs)与其结合位点之间分子相互作用的生物能量基础,探索促进和限制调控网络中杂种不相容性的进化条件。生物能量参数考虑了TF与其结合位点之间形成键的自由能以及细胞内环境中TF的可用性。这些共同决定了TF在启动子位点上的占有率、随后基因表达的程度(在二倍体中)以及等位基因相互作用之间的显性程度。这导致了一个S形的基因型-表型图谱和适合度景观,其形状细节决定了对杂种不相容性的生物能量进化约束程度。使用基于个体的模拟,我们让两个异域种群接受平行定向或稳定选择。在任何一种选择类型下都会发生杂种基因表达的失调,尽管在定向选择下进化得更快。在定向选择下,杂种不相容性的程度随着接近衍生亲本表达水平的基因型-表型图谱的斜率增加。在稳定选择下,杂种不相容性源于补偿性突变,当相互作用的生物能量特性导致稳定表达水平周围近中性基因型的空间变宽时,不相容性更大。在生物能量特性有利于显性调控相互作用的程度上,F2比F1表现出更高的杂种不相容性。本模型是Bateson-Dobzhansky-Muller模型的一个机制明确的案例,通过调控分化的分子机制将环境选择压力与杂种不相容性联系起来。决定表达的生物能量参数代表了转录调控可测量的特性,为实证研究表型进化如何在杂种分子水平上导致上位性不相容性提供了一个预测框架。