Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS, F-31062 Toulouse, France, CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, 205 route de Narbonne, BP 64182, F-31077 Toulouse, France and Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France.
Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS, F-31062 Toulouse, France, Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France.
Carcinogenesis. 2014 Nov;35(11):2503-11. doi: 10.1093/carcin/bgu185. Epub 2014 Aug 30.
Gem is a small guanosine triphosphate (GTP)-binding protein within the Ras superfamily, involved in the regulation of voltage-gated calcium channel activity and cytoskeleton reorganization. Gem overexpression leads to stress fiber disruption, actin and cell shape remodeling and neurite elongation in interphase cells. In this study, we show that Gem plays a crucial role in the regulation of cortical actin cytoskeleton that undergoes active remodeling during mitosis. Ectopic expression of Gem leads to cortical actin disruption and spindle mispositioning during metaphase. The regulation of spindle positioning by Gem involves its downstream effector Gmip. Knockdown of Gmip rescued Gem-induced spindle phenotype, although both Gem and Gmip accumulated at the cell cortex. In addition, we implicated RhoA GTPase as an important effector of Gem/Gmip signaling. Inactivation of RhoA by overexpressing dominant-negative mutant prevented normal spindle positioning. Introduction of active RhoA rescued the actin and spindle positioning defects caused by Gem or Gmip overexpression. These findings demonstrate a new role of Gem/Gmip/RhoA signaling in cortical actin regulation during early mitotic stages.
Gem 是 Ras 超家族中的一种小型鸟嘌呤三磷酸(GTP)结合蛋白,参与调节电压门控钙通道活性和细胞骨架重排。Gem 的过表达导致有丝分裂间期细胞中的应力纤维破坏、肌动蛋白和细胞形状重塑以及神经突伸长。在这项研究中,我们表明 Gem 在调节皮质肌动蛋白细胞骨架方面起着至关重要的作用,在有丝分裂过程中,皮质肌动蛋白细胞骨架经历活跃的重塑。Gem 的异位表达导致中期时皮质肌动蛋白的破坏和纺锤体定位错误。Gem 通过其下游效应物 Gmip 调节纺锤体定位。Gmip 的敲低挽救了 Gem 诱导的纺锤体表型,尽管 Gem 和 Gmip 都聚集在细胞皮层。此外,我们还发现 RhoA GTPase 是 Gem/Gmip 信号的重要效应物。通过过表达显性失活突变体来抑制 RhoA 的活性可防止纺锤体的正常定位。引入活性 RhoA 可挽救 Gem 或 Gmip 过表达引起的肌动蛋白和纺锤体定位缺陷。这些发现表明 Gem/Gmip/RhoA 信号在早期有丝分裂阶段的皮质肌动蛋白调节中具有新的作用。