Kamran Muhammad Arshad, Liu Ruibin, Shi Li-Jie, Li Zi-An, Marzi Thomas, Schöppner Christian, Farle Michael, Zou Bingsuo
Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
Nanotechnology. 2014 Sep 26;25(38):385201. doi: 10.1088/0957-4484/25/38/385201. Epub 2014 Sep 2.
Tunable optical emission properties from ferromagnetic semiconductors have not been well identified yet. In this work, high-quality Mn(II)-doped CdS nanowires and micrometer belts were prepared using a controlled chemical vapor deposition technique. The Mn doping could be controlled with time, precursor concentration and temperature. These wires or belts can produce both tunable redshifted emissions and ferromagnetic responses simultaneously upon doping. The strong emission bands at 572, 651, 693, 712, 745, 768, 787 and 803 nm, due to the Mn(II) (4)T1((4)G) → (6)A1((6)s) d-d transition, can be detected and accounted for by the aggregation of Mn ions at Cd sites in the CdS lattice at high temperature. These aggregates with ferromagnetism and shifted luminescence are related to the excitonic magnetic polaron (EMP) and localized EMP formations; this is verified by ab initio calculations. The correlation between aggregation-dependent optical emissions and ferromagnetic responses not only presents a new size effect for diluted magnetic semiconductors (DMSs), but also supplies a possible way to study or modulate the ferromagnetic properties of a DMS and to fabricate spin-related photonic devices in the future.
铁磁半导体的可调谐光发射特性尚未得到很好的确认。在这项工作中,使用可控化学气相沉积技术制备了高质量的Mn(II)掺杂CdS纳米线和微米带。Mn掺杂可以通过时间、前驱体浓度和温度来控制。这些纳米线或微米带在掺杂时可以同时产生可调谐的红移发射和铁磁响应。由于Mn(II)的(4)T1((4)G) → (6)A1((6)s) d-d跃迁,在572、651、693、712、745、768、787和803 nm处的强发射带可以被检测到,这是由于高温下Mn离子在CdS晶格中的Cd位点聚集所致。这些具有铁磁性和发光位移的聚集体与激子磁极化子(EMP)和局域化EMP的形成有关;这通过从头算计算得到了验证。聚集依赖的光发射与铁磁响应之间的相关性不仅为稀磁半导体(DMSs)呈现了一种新的尺寸效应,而且为未来研究或调制DMS的铁磁特性以及制造自旋相关光子器件提供了一种可能的途径。