1] Basic Science Program, Leidos Biomedical Research Inc; Lab of Experimental Immunology, Frederick National Lab, Frederick, Maryland, USA [2] The Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
Mol Ther Nucleic Acids. 2014 Sep 2;3(9):e191. doi: 10.1038/mtna.2014.42.
The discovery of probabilistic promoter switches in genes that code for class I major histocompatibility complex receptors in mouse and human provides a useful paradigm to explain programmed cell fate decisions. These switches have preset probabilities of transcribing in either the sense or antisense direction, and the characteristics of individual switches are programmed by the relative affinity of competing transcription factor-binding sites. The noncoding RNAs produced from these switches can either activate or suppress gene transcription, based on their location relative to the promoter responsible for gene expression in mature cells. The switches are active in a developmental phase that precedes gene expression by mature cells, thus temporally separating the stochastic events that determine gene activation from the protein expression phase. This allows the probabilistic generation of variegated gene expression in the absence of selection and ensures that mature cells have stable expression of the genes. Programmed probabilistic switches may control cell fate decisions in many developmental systems, and therefore, it is important to investigate noncoding RNAs expressed by progenitor cells to determine if they are expressed in a stochastic manner at the single cell level. This review provides a summary of current knowledge regarding murine and human switches, followed by speculation on the possible involvement of probabilistic switches in other systems of programmed differentiation.
在编码 I 类主要组织相容性复合物受体的基因中发现概率启动子开关,为解释程序性细胞命运决定提供了一个有用的范例。这些开关在 sense 或 antisense 方向转录的概率是预设的,并且单个开关的特征是由竞争转录因子结合位点的相对亲和力编程的。这些开关产生的非编码 RNA 可以根据其相对于负责成熟细胞中基因表达的启动子的位置激活或抑制基因转录。这些开关在成熟细胞表达基因之前的发育阶段是活跃的,从而在决定基因激活的随机事件与蛋白质表达阶段之间进行时间分离。这允许在没有选择的情况下概率性地产生基因表达的变异性,并确保成熟细胞稳定表达基因。程序性概率开关可能控制许多发育系统中的细胞命运决定,因此,研究祖细胞表达的非编码 RNA 以确定它们是否在单细胞水平上以随机方式表达非常重要。这篇综述提供了关于鼠和人开关的当前知识的总结,随后推测概率开关可能参与其他程序性分化系统。