Suppr超能文献

矿物涂层的内部孔隙率有助于快速砂滤器中微生物对地下水进行处理的活性。

Internal porosity of mineral coating supports microbial activity in rapid sand filters for groundwater treatment.

作者信息

Gülay Arda, Tatari Karolina, Musovic Sanin, Mateiu Ramona V, Albrechtsen Hans-Jørgen, Smets Barth F

机构信息

Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.

Center for Electron Nanoscopy, Technical University of Denmark, Kongens Lyngby, Denmark.

出版信息

Appl Environ Microbiol. 2014 Nov;80(22):7010-20. doi: 10.1128/AEM.01959-14. Epub 2014 Sep 5.

Abstract

A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4 (+) removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization.

摘要

在饮用水生产中,通过快速砂滤处理地下水时,滤料颗粒表面会形成一层矿物涂层。该涂层改变了滤料的物理和化学性质,但关于其对微生物群落的活性、定殖、多样性和丰度的影响却知之甚少。本研究表明,矿物涂层可对快速砂滤池中微生物群落的定殖和活性产生积极影响。为了解这种影响,我们调查了不同矿物涂层程度的滤料中所有原核生物以及硝化原核生物的丰度、空间分布、定殖和多样性。我们还研究了矿物涂层的物理和化学特性。矿物涂层的量与滤料的内部孔隙率、堆积密度和生物可利用表面积呈正相关。NH4(+)的体积去除率也随着矿物涂层程度的增加而提高。同样,细菌16S rRNA和amoA的丰度与矿物涂层水平的增加呈正相关。微生物定殖主要可见于矿物涂层的外周(60.6±35.6μm)内,该涂层厚度可达600±51μm。环境扫描电子显微镜(E-SEM)观察显示有富含细胞外聚合物的基质和亚微米大小的细菌细胞。焦磷酸测序分析表明,无论矿物涂层程度如何,硝化菌的多样性图谱相似。总体而言,我们的结果表明,矿物涂层对快速砂滤池中微生物的定殖和活性有积极影响,这很可能是由于内部矿物孔隙的大表面积便于微生物定殖,从而增加了单位体积内的细胞丰度。

相似文献

1
Internal porosity of mineral coating supports microbial activity in rapid sand filters for groundwater treatment.
Appl Environ Microbiol. 2014 Nov;80(22):7010-20. doi: 10.1128/AEM.01959-14. Epub 2014 Sep 5.
2
Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
Chemosphere. 2015 Nov;138:47-59. doi: 10.1016/j.chemosphere.2015.05.032. Epub 2015 Jun 1.
5
6
Groundwater chemistry determines the prokaryotic community structure of waterworks sand filters.
Environ Sci Technol. 2015 Jan 20;49(2):839-46. doi: 10.1021/es5046452.
7
Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks.
Sci Total Environ. 2014 Nov 15;499:257-64. doi: 10.1016/j.scitotenv.2014.08.052. Epub 2014 Sep 3.
8
Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp.
Water Res. 2017 Dec 15;127:239-248. doi: 10.1016/j.watres.2017.10.023. Epub 2017 Oct 10.
9
Broad Dissemination of Plasmids across Groundwater-Fed Rapid Sand Filter Microbiomes.
mBio. 2021 Dec 21;12(6):e0306821. doi: 10.1128/mBio.03068-21. Epub 2021 Nov 30.
10
Comparison of sand-based water filters for point-of-use arsenic removal in China.
Chemosphere. 2017 Feb;168:155-162. doi: 10.1016/j.chemosphere.2016.10.021. Epub 2016 Oct 22.

引用本文的文献

1
Inoculation Improves Microbial Manganese Removal during the Start-Up of Rapid Sand Filters.
ACS ES T Water. 2025 Apr 15;5(5):2479-2489. doi: 10.1021/acsestwater.5c00050. eCollection 2025 May 9.
2
Comprehensive characterization of aerobic groundwater biotreatment media.
Water Res. 2023 Feb 15;230:119587. doi: 10.1016/j.watres.2023.119587. Epub 2023 Jan 7.
3
Evolutionary Ecology of Natural Comammox Populations.
mSystems. 2022 Feb 22;7(1):e0113921. doi: 10.1128/msystems.01139-21. Epub 2022 Jan 11.
4
Removal of phytotoxins in filter sand used for drinking water treatment.
Water Res. 2021 Oct 15;205:117610. doi: 10.1016/j.watres.2021.117610. Epub 2021 Aug 27.
6
DNA- and RNA-SIP Reveal spp. as Key Drivers of Nitrification in Groundwater-Fed Biofilters.
mBio. 2019 Nov 5;10(6):e01870-19. doi: 10.1128/mBio.01870-19.
7
Diversity of Iron Oxidizers in Groundwater-Fed Rapid Sand Filters: Evidence of Fe(II)-Dependent Growth by and spp.
Front Microbiol. 2018 Dec 3;9:2808. doi: 10.3389/fmicb.2018.02808. eCollection 2018.
8
Microbial biotechnologies for potable water production.
Microb Biotechnol. 2017 Sep;10(5):1094-1097. doi: 10.1111/1751-7915.12837. Epub 2017 Sep 14.
9
Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp.
ISME J. 2016 Nov;10(11):2569-2581. doi: 10.1038/ismej.2016.63. Epub 2016 Apr 29.
10
Ecological patterns, diversity and core taxa of microbial communities in groundwater-fed rapid gravity filters.
ISME J. 2016 Sep;10(9):2209-22. doi: 10.1038/ismej.2016.16. Epub 2016 Mar 8.

本文引用的文献

1
Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment.
Water Res. 2014 Nov 1;64:226-236. doi: 10.1016/j.watres.2014.07.001. Epub 2014 Jul 9.
2
Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics.
Microb Biotechnol. 2014 Jan;7(1):32-43. doi: 10.1111/1751-7915.12079. Epub 2013 Oct 1.
3
A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters.
Water Res. 2013 Oct 15;47(16):6380-7. doi: 10.1016/j.watres.2013.08.005. Epub 2013 Sep 19.
4
454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters.
FEMS Microbiol Ecol. 2013 Sep;85(3):612-26. doi: 10.1111/1574-6941.12148. Epub 2013 Jun 12.
6
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. doi: 10.1093/nar/gks1219. Epub 2012 Nov 28.
7
Impact of long-term diesel contamination on soil microbial community structure.
Appl Environ Microbiol. 2013 Jan;79(2):619-30. doi: 10.1128/AEM.02747-12. Epub 2012 Nov 9.
8
Physiology and diversity of ammonia-oxidizing archaea.
Annu Rev Microbiol. 2012;66:83-101. doi: 10.1146/annurev-micro-092611-150128.
9
Microbial survey of a full-scale, biologically active filter for treatment of drinking water.
Appl Environ Microbiol. 2012 Sep;78(17):6390-4. doi: 10.1128/AEM.00308-12. Epub 2012 Jun 29.
10
UCHIME improves sensitivity and speed of chimera detection.
Bioinformatics. 2011 Aug 15;27(16):2194-200. doi: 10.1093/bioinformatics/btr381. Epub 2011 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验