Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07445, Jena, Germany.
New Phytol. 2014 Dec;204(4):932-42. doi: 10.1111/nph.12979. Epub 2014 Sep 7.
We used bomb-radiocarbon and raw minirhizotron lifetimes of fine roots (< 0.5 mm in diameter) in the organic layer of Norway spruce (Picea abies) forests in southern Sweden to test if different models are able to reconcile the apparently contradicting turnover time estimates from both techniques. We present a framework based on survival functions that is able to jointly model bomb-radiocarbon and minirhizotron data. At the same time we integrate prior knowledge about biases of both techniques--the classification of dead roots in minirhizotrons and the use of carbon reserves to grow new roots. Two-pool models, either in parallel or in serial setting, were able to reconcile the bomb-radiocarbon and minirhizotron data. These models yielded a mean residence time of 3.80 ± 0.16 yr (mean ± SD). On average 60 ± 2% of fine roots turned over within 0.75 ± 0.10 yr, while the rest was turning over within 8.4 ± 0.2 yr. Bomb-radiocarbon and minirhizotron data alone give a biased estimate of fine-root turnover. The two-pool models allow a mechanistic interpretation for the coexistence of fast- and slow-cycling roots--suberization and branching for the serial-two-pool model and branching due to ectomycorrhizal fungi-root interactions for the parallel-two-pool model.
我们利用来自瑞典南部挪威云杉(Picea abies)林有机层的细根(<0.5 毫米直径)的爆炸碳放射性和原始微根管寿命来测试不同模型是否能够协调这两种技术得出的明显矛盾的周转率估计值。我们提出了一个基于生存函数的框架,该框架能够联合模拟爆炸碳放射性和微根管数据。同时,我们整合了这两种技术的偏见的先验知识——微根管中死根的分类以及利用碳储备来生长新根。无论是并行还是串行设置的两池模型都能够协调爆炸碳放射性和微根管数据。这些模型得出的平均停留时间为 3.80 ± 0.16 年(平均值 ± 标准差)。平均而言,60 ± 2%的细根在 0.75 ± 0.10 年内完成周转,其余的则在 8.4 ± 0.2 年内完成周转。爆炸碳放射性和微根管数据本身对细根周转率的估计存在偏差。两池模型允许对快速和慢速循环根的共存进行机制解释——对于串行两池模型,是由于木质化和分枝,对于平行两池模型,是由于外生菌根真菌与根的相互作用导致分枝。