Suppr超能文献

掠入射X射线荧光和X射线反射率数据的联合评估,用于改进超浅深度分布的剖析。

Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions.

作者信息

Ingerle D, Meirer F, Pepponi G, Demenev E, Giubertoni D, Wobrauschek P, Streli C

机构信息

Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna, Austria.

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands.

出版信息

Spectrochim Acta Part B At Spectrosc. 2014 Sep 1;99(100):121-128. doi: 10.1016/j.sab.2014.06.019.

Abstract

The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted elements with drastically increased confidence level. Silicon wafers implanted with Arsenic at different implantation energies were measured by XRR and GIXRF using a combined, simultaneous measurement and data evaluation procedure. The data were processed using a self-developed software package (JGIXA), designed for simultaneous fitting of GIXRF and XRR data. The results were compared with depth profiles obtained by Secondary Ion Mass Spectrometry (SIMS).

摘要

半导体器件工艺尺寸的持续缩小,使得结深以及随之而来的注入深度达到硅衬底顶部的几个纳米。这就促使需要有能够分析掺杂剂分布、总剂量和可能存在的杂质的灵敏方法。利用X射线外部反射的X射线技术对表面非常敏感,因此为工艺分析和控制提供了一种无损工具。X射线反射测量法(XRR)是一种成熟的技术,用于表征层厚在纳米范围内的单层和多层薄膜结构。通过在掠入射状态下改变入射角同时测量镜面反射的X射线束来获取XRR光谱。所得角度相关曲线的形状与样品中电子密度的变化相关,但不提供关于样品中化学元素的存在或分布的直接信息。掠入射X射线荧光光谱法(GIXRF)测量在掠射角下入射的X射线束诱导产生的X射线荧光。所得角度相关强度曲线与样品中元素的深度分布和质量密度相关。GIXRF提供有关污染物、总注入剂量以及在一定程度上有关掺杂剂分布深度的信息,但在精确分布函数方面不明确。这两种技术都使用类似的测量程序和数据评估策略,即通过拟合测量和计算的角度曲线来优化样品模型。此外,所应用的样品模型可以从相同的物理性质推导得出,如原子散射/形状因子和元素浓度;因此同时分析是一种直接的方法。这种联合分析反过来减少了各个技术的不确定性,使得能够以大大提高的置信水平确定注入元素的剂量和深度分布。使用联合的同时测量和数据评估程序,通过XRR和GIXRF对在不同注入能量下注入砷的硅片进行了测量。数据使用一个自行开发的软件包(JGIXA)进行处理,该软件包设计用于同时拟合GIXRF和XRR数据。将结果与通过二次离子质谱法(SIMS)获得的深度分布进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0373/4152003/c816e179ef0d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验