Suppr超能文献

用于高场磁共振成像中B1(+)不均匀性补偿的同时多层激发的低峰值功率多频段辐条脉冲

Low peak power multiband spokes pulses for B1 (+) inhomogeneity-compensated simultaneous multislice excitation in high field MRI.

作者信息

Sharma Anuj, Bammer Roland, Stenger V Andrew, Grissom William A

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Magn Reson Med. 2015 Sep;74(3):747-55. doi: 10.1002/mrm.25455. Epub 2014 Sep 9.

Abstract

PURPOSE

To design low peak and integrated power simultaneous multislice excitation radiofrequency pulses with transmit field inhomogeneity compensation in high field MRI.

THEORY AND METHODS

The "interleaved greedy and local optimization" algorithm for small-tip-angle spokes pulses is extended to design multiband (MB) spokes pulses that simultaneously excite multiple slices, with independent spokes weight optimization for each slice. The peak power of the pulses is controlled using a slice phase optimization technique. Simulations were performed at 7T to compare the peak power of optimized MB spokes pulses to unoptimized pulses, and to compare the proposed slice-independent spokes weight optimization to a joint approach. In vivo experiments were performed at 7T to validate the pulse's function and compare them to conventional MB pulses.

RESULTS

Simulations showed that the peak power-minimized pulses had lower peak power than unregularized and integrated power-regularized pulses, and that the slice-independent spokes weight optimization consistently produced lower flip angle inhomogeneity and lower peak and integrated power pulses. In the brain imaging experiments, the MB spokes pulses showed significant improvement in excitation flip angle and subsequently signal homogeneity compared to conventional MB pulses.

CONCLUSION

The proposed MB spokes pulses improve flip angle homogeneity in simultaneous multislice acquisitions at ultrahigh field, with minimal increase in integrated and peak radiofrequency power.

摘要

目的

设计用于高场磁共振成像(MRI)中具有发射场不均匀性补偿的低峰值和集成功率同时多层激发射频脉冲。

理论与方法

将用于小翻转角辐条脉冲的“交错贪婪与局部优化”算法扩展,以设计能同时激发多个层面的多频段(MB)辐条脉冲,对每个层面独立进行辐条权重优化。利用层面相位优化技术控制脉冲的峰值功率。在7T场强下进行模拟,比较优化后的MB辐条脉冲与未优化脉冲的峰值功率,并将所提出的独立于层面的辐条权重优化方法与联合方法进行比较。在7T场强下进行体内实验,以验证该脉冲的功能并将其与传统MB脉冲进行比较。

结果

模拟结果表明,峰值功率最小化的脉冲比未正则化和集成功率正则化的脉冲具有更低的峰值功率,且独立于层面的辐条权重优化始终能产生更低的翻转角不均匀性以及更低的峰值和集成功率脉冲。在脑成像实验中,与传统MB脉冲相比,MB辐条脉冲在激发翻转角以及随后的信号均匀性方面有显著改善。

结论

所提出的MB辐条脉冲在超高场同时多层采集中改善了翻转角均匀性,且集成射频功率和峰值射频功率的增加最小。

相似文献

4
Root-flipped multiband refocusing pulses.
Magn Reson Med. 2016 Jan;75(1):227-37. doi: 10.1002/mrm.25629. Epub 2015 Feb 22.
6
Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.
Magn Reson Med. 2016 Mar;75(3):1198-208. doi: 10.1002/mrm.25739. Epub 2015 Apr 27.
9
A low power radiofrequency pulse for simultaneous multislice excitation and refocusing.
Magn Reson Med. 2014 Oct;72(4):949-58. doi: 10.1002/mrm.25389. Epub 2014 Aug 7.
10
Robust RF shimming and small-tip-angle multispoke pulse design with finite-difference regularization.
Magn Reson Med. 2021 Sep;86(3):1472-1481. doi: 10.1002/mrm.28820. Epub 2021 May 1.

引用本文的文献

3
Diffusion Imaging in the Post HCP Era.
J Magn Reson Imaging. 2021 Jul;54(1):36-57. doi: 10.1002/jmri.27247. Epub 2020 Jun 20.
4
Parallel Transmission for Ultrahigh Field MRI.
Top Magn Reson Imaging. 2019 Jun;28(3):159-171. doi: 10.1097/RMR.0000000000000204.
5
Brain imaging with improved acceleration and SNR at 7 Tesla obtained with 64-channel receive array.
Magn Reson Med. 2019 Jul;82(1):495-509. doi: 10.1002/mrm.27695. Epub 2019 Feb 25.
6
Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission.
Neuroimage. 2019 Jan 1;184:396-408. doi: 10.1016/j.neuroimage.2018.09.038. Epub 2018 Sep 17.
7
High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.
Magn Reson Med. 2018 Nov;80(5):1857-1870. doi: 10.1002/mrm.27189. Epub 2018 Mar 30.
8
Phase-sensitive B mapping: Effects of relaxation and RF spoiling.
Magn Reson Med. 2018 Jul;80(1):101-111. doi: 10.1002/mrm.27009. Epub 2017 Nov 20.
9
Imaging at ultrahigh magnetic fields: History, challenges, and solutions.
Neuroimage. 2018 Mar;168:7-32. doi: 10.1016/j.neuroimage.2017.07.007. Epub 2017 Jul 8.

本文引用的文献

2
Iterative method for predistortion of MRI gradient waveforms.
IEEE Trans Med Imaging. 2014 Aug;33(8):1641-7. doi: 10.1109/TMI.2014.2320987. Epub 2014 Apr 29.
5
Ultra-fast MRI of the human brain with simultaneous multi-slice imaging.
J Magn Reson. 2013 Apr;229:90-100. doi: 10.1016/j.jmr.2013.02.002. Epub 2013 Feb 13.
6
Multiband accelerated spin-echo echo planar imaging with reduced peak RF power using time-shifted RF pulses.
Magn Reson Med. 2013 May;69(5):1261-7. doi: 10.1002/mrm.24719. Epub 2013 Mar 6.
7
Improved encoding pulses for Bloch-Siegert B1(+) mapping.
J Magn Reson. 2013 Jan;226:79-87. doi: 10.1016/j.jmr.2012.11.004. Epub 2012 Nov 17.
8
Small-tip-angle spokes pulse design using interleaved greedy and local optimization methods.
Magn Reson Med. 2012 Nov;68(5):1553-62. doi: 10.1002/mrm.24165. Epub 2012 Mar 5.
9
DREAM--a novel approach for robust, ultrafast, multislice B₁ mapping.
Magn Reson Med. 2012 Nov;68(5):1517-26. doi: 10.1002/mrm.24158. Epub 2012 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验