Goure-Doubi Herve, Martias Céline, Lecomte-Nana Gisèle Laure, Nait-Ali Benoît, Smith Agnès, Thune Elsa, Villandier Nicolas, Gloaguen Vincent, Soubrand Marilyne, Konan Léon koffi
Groupe d'Etude des Matériaux Hétérogènes (GEMH), Ecole Nationale Supérieure de Céramique Industrielle, Centre Européen de la Céramique, 12 Rue Atlantis, 87068 Limoges Cedex, France.
Science des Procédés Céramiques et de Traitements de Surface (SPCTS), Ecole Nationale Supérieure de Céramique Industrielle, Centre Européen de la Céramique, 12 Rue Atlantis, 87068 Limoges Cedex, France.
J Colloid Interface Sci. 2014 Nov 15;434:208-17. doi: 10.1016/j.jcis.2014.07.026. Epub 2014 Aug 1.
The aim of this study was to understand the mechanisms responsible for the strengthening of "geomimetic" materials, especially the chemical bonding between clay and humic substances. The mineral matter is lateritic clay which mainly consists in kaolinite, goethite, hematite and quartz. The other starting products are fulvic acid (FA) and lime. The preparation of these geomimetic materials is inspired from the natural stabilization of soils by humic substances occurring over thousands of years. The present process involves acidic and alkaline reactions followed by a curing period of 18days at 60°C under a water saturated atmosphere. The acceleration of the strengthening process usually observed in soils makes this an original process for treatment of soils. The consolidation of the "geomimetic" materials could result from two major phenomena: (i) chemical bonding at the interface between the clay particles and iron compounds and the functional groups of the fulvic acid, (ii) a partial dissolution of the clay grains followed by the precipitation of the cementitious phases, namely calcium silicate hydrates, calcium aluminate hydrates and mixed calcium silicum and aluminum hydrates. Indeed, the decrease of the BET specific area of the lateritic clay after 24 h of reaction with FA added to the structural reorganization observed between 900 and 1000°C in the "geomimetic" material, and to the results of adsorption measurements, confirm the formation of organo-ferric complexes. The presence of iron oxides in clay, in the form of goethite, appears to be another parameter in favor of a ligand exchange process and the creation of binding bridges between FA and the mineral matter. Indeed all faces of goethite are likely to be involved in complexation reactions whereas in lateritic clay only lateral faces could be involved. The results of the adsorption experiments realized at a local scale will improve our understandings about the process of adsorption of FA on lateritic clays and its involvement in the strengthening process of materials.
本研究的目的是了解“仿地质”材料强化的机制,特别是粘土与腐殖物质之间的化学键合。矿物质为红土粘土,主要由高岭石、针铁矿、赤铁矿和石英组成。其他起始产物是富里酸(FA)和石灰。这些仿地质材料的制备灵感来源于数千年来腐殖物质对土壤的自然稳定作用。目前的过程包括酸碱反应,随后在60°C、水饱和气氛下养护18天。在土壤中通常观察到的强化过程加速,使得这成为一种处理土壤的原始方法。“仿地质”材料的固结可能源于两个主要现象:(i)粘土颗粒与铁化合物以及富里酸官能团之间的界面处的化学键合,(ii)粘土颗粒的部分溶解,随后是胶凝相的沉淀,即硅酸钙水合物、铝酸钙水合物以及硅铝混合水合物。事实上,与添加到“仿地质”材料中在900至1000°C之间观察到的结构重组的FA反应24小时后,红土粘土的BET比表面积降低,以及吸附测量结果,证实了有机铁络合物的形成。以针铁矿形式存在于粘土中的铁氧化物似乎是有利于配体交换过程以及在FA与矿物质之间形成结合桥的另一个参数。事实上,针铁矿的所有面都可能参与络合反应,而在红土粘土中只有侧面可能参与。在局部尺度上进行的吸附实验结果将增进我们对FA在红土粘土上的吸附过程及其在材料强化过程中所起作用的理解。