Wang Kun-Ching
Department of Information Technology & Communication, Shih Chien University, 200 University Road, Neimen, Kaohsiung 84550, Taiwan.
Sensors (Basel). 2014 Sep 9;14(9):16692-714. doi: 10.3390/s140916692.
In this paper, we present a novel texture image feature for Emotion Sensing in Speech (ESS). This idea is based on the fact that the texture images carry emotion-related information. The feature extraction is derived from time-frequency representation of spectrogram images. First, we transform the spectrogram as a recognizable image. Next, we use a cubic curve to enhance the image contrast. Then, the texture image information (TII) derived from the spectrogram image can be extracted by using Laws' masks to characterize emotional state. In order to evaluate the effectiveness of the proposed emotion recognition in different languages, we use two open emotional databases including the Berlin Emotional Speech Database (EMO-DB) and eNTERFACE corpus and one self-recorded database (KHUSC-EmoDB), to evaluate the performance cross-corpora. The results of the proposed ESS system are presented using support vector machine (SVM) as a classifier. Experimental results show that the proposed TII-based feature extraction inspired by visual perception can provide significant classification for ESS systems. The two-dimensional (2-D) TII feature can provide the discrimination between different emotions in visual expressions except for the conveyance pitch and formant tracks. In addition, the de-noising in 2-D images can be more easily completed than de-noising in 1-D speech.
在本文中,我们提出了一种用于语音情感感知(ESS)的新型纹理图像特征。这一想法基于纹理图像携带与情感相关信息这一事实。特征提取源自频谱图图像的时频表示。首先,我们将频谱图转换为可识别的图像。接下来,我们使用三次曲线来增强图像对比度。然后,通过使用劳斯模板来表征情感状态,可从频谱图图像中提取纹理图像信息(TII)。为了评估所提出的情感识别在不同语言中的有效性,我们使用两个公开的情感数据库,包括柏林情感语音数据库(EMO-DB)和eNTERFACE语料库,以及一个自行录制的数据库(KHUSC-EmoDB),来评估跨语料库的性能。所提出的ESS系统的结果使用支持向量机(SVM)作为分类器呈现。实验结果表明,受视觉感知启发所提出的基于TII的特征提取可为ESS系统提供显著的分类效果。二维(2-D)TII特征除了能传达音高和共振峰轨迹外,还能在视觉表达中区分不同情感。此外,二维图像中的去噪比一维语音中的去噪更容易完成。