ReNUWIt Engineering Research Center ‡Department of Civil & Environmental Engineering, University of California at Berkeley Berkeley, California 94720, United States.
Environ Sci Technol. 2014 Oct 7;48(19):11512-20. doi: 10.1021/es502785t. Epub 2014 Sep 10.
The diffuse biomat formed on the bottom of shallow, open-water unit process wetland cells contains suboxic zones that provide conditions conducive to NO3(-) removal via microbial denitrification, as well as anaerobic ammonium oxidation (anammox). To assess these processes, nitrogen cycling was evaluated over a 3-year period in a pilot-scale wetland cell receiving nitrified municipal wastewater effluent. NO3(-) removal varied seasonally, with approximately two-thirds of the NO3(-) entering the cell removed on an annual basis. Microcosm studies indicated that NO3(-) removal was mainly attributable to denitrification within the diffuse biomat (i.e., 80 ± 20%), with accretion of assimilated nitrogen accounting for less than 3% of the NO3(-) removed. The importance of denitrification to NO3(-) removal was supported by the presence of denitrifying genes (nirS and nirK) within the biomat. While modest when compared to the presence of denitrifying genes, a higher abundance of the anammox-specific gene hydrazine synthase (hzs) at the biomat bottom than at the biomat surface, the simultaneous presence of NH4(+) and NO3(-) within the biomat, and NH4(+) removal coupled to NO2(-) and NO3(-) removal in microcosm studies, suggested that anammox may have been responsible for some NO3(-) removal, following reduction of NO3(-) to NO2(-) within the biomat. The annual temperature-corrected areal first-order NO3(-) removal rate (k20 = 59.4 ± 6.2 m yr(-1)) was higher than values reported for more than 75% of vegetated wetlands that treated water in which NO3(-) was the primary nitrogen species (e.g., nitrified secondary wastewater effluent and agricultural runoff). The inclusion of open-water cells, originally designed for the removal of trace organic contaminants and pathogens, in unit-process wetlands may enhance NO3(-) removal as compared to existing vegetated wetland systems.
在浅水开放式单元湿地池底形成的弥散生物膜中存在亚缺氧区,为通过微生物反硝化作用以及厌氧氨氧化(anammox)去除 NO3(-) 提供了有利条件。为了评估这些过程,在一个接收硝化城市废水出水的中试规模湿地池中,对氮循环进行了为期 3 年的评估。NO3(-) 的去除随季节而变化,每年大约有三分之二进入池中的 NO3(-) 被去除。微宇宙研究表明,NO3(-) 的去除主要归因于弥散生物膜中的反硝化作用(即 80 ± 20%),同化氮的积累对去除的 NO3(-) 的贡献小于 3%。生物膜中存在反硝化基因(nirS 和 nirK)支持了反硝化作用对 NO3(-) 去除的重要性。虽然与反硝化基因的存在相比微不足道,但在生物膜底部检测到比生物膜表面更高丰度的厌氧氨氧化特异性基因肼合酶(hzs),同时在生物膜中存在 NH4(+) 和 NO3(-),以及在微宇宙研究中 NH4(+) 的去除与 NO2(-) 和 NO3(-) 的去除偶联,表明在生物膜中还原 NO3(-) 为 NO2(-) 后,厌氧氨氧化可能负责部分 NO3(-) 的去除。经温度校正的面积一级 NO3(-) 去除速率(k20 = 59.4 ± 6.2 m yr(-1))高于处理以 NO3(-) 为主要氮物种的水(例如硝化二级废水出水和农业径流)的 75%以上植物湿地的报告值。在单元过程湿地中纳入原本设计用于去除痕量有机污染物和病原体的开放式水池,可能会比现有植物湿地系统更有效地去除 NO3(-)。