Institut für Mineralogie, Leibniz Universität Hannover, 30167 Hannover, Germany.
Sci Rep. 2014 Sep 11;4:6342. doi: 10.1038/srep06342.
Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed "gabbro glacier" model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.
轴向熔融透镜夹在大洋中脊下部洋壳和片状岩墙序列之间,被认为是大洋地壳增生的主要岩浆源。根据广泛讨论的“辉长岩冰川”模型,下部洋壳的形成需要有效地冷却轴向熔融透镜,导致部分结晶和晶体-熔体糊状物下沉到下地壳。这些过程被认为受到熔融透镜上方周期性岩浆补给和热液循环的控制。在这里,我们使用从东太平洋综合大洋钻探计划钻孔 1256D 中钻探的角闪质重结晶片状岩墙中斜长石的化学分带来量化熔融透镜上方的冷却速率。我们使用基于斜长石中 CaAl-NaSi 互扩散的正向建模方法来估计冷却速率。结果表明,由于岩浆耗尽期间熔融透镜上方的热液循环,从 1000-1050°C 的峰值热印痕冷却到 600°C 仅需 10-30 年。估计的快速热液冷却解释了在快速扩张的大洋中脊如何实现从熔融透镜中有效提取热量。