Gómez Flores Wilfrido, Pereira Wagner Coelho de Albuquerque, Infantosi Antonio Fernando Catelli
Technology Information Laboratory, Center for Research and Advanced Studies of the National Polytechnic Institute, Ciudad Victoria, Tamaulipas, Mexico.
Biomedical Engineering Program/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Ultrasound Med Biol. 2014 Nov;40(11):2609-21. doi: 10.1016/j.ultrasmedbio.2014.06.005. Epub 2014 Sep 11.
Breast ultrasound (BUS) is considered the most important adjunct method to mammography for diagnosing cancer. However, this image modality suffers from an intrinsic artifact called speckle noise, which degrades spatial and contrast resolution and obscures the screened anatomy. Hence, it is necessary to reduce speckle artifacts before performing image analysis by means of computer-aided diagnosis systems, for example. In addition, the trade-off between smoothing level and preservation of lesion contour details should be addressed by speckle reduction schemes. In this scenario, we propose a BUS despeckling method based on anisotropic diffusion guided by Log-Gabor filters (ADLG). Because we assume that different breast tissues have distinct textures, in our approach we perform a multichannel decomposition of the BUS image using Log-Gabor filters. Next, the conduction coefficient of anisotropic diffusion filtering is computed using texture responses instead of intensity values as stated originally. The proposed algorithm is validated using both synthetic and real breast data sets, with 900 and 50 images, respectively. The performance measures are compared with four existing speckle reduction schemes based on anisotropic diffusion: conventional anisotropic diffusion filtering (CADF), speckle-reducing anisotropic diffusion (SRAD), texture-oriented anisotropic diffusion (TOAD), and interference-based speckle filtering followed by anisotropic diffusion (ISFAD). The validity metrics are the Pratt's figure of merit, for synthetic images, and the mean radial distance (in pixels), for real sonographies. Figure of merit and mean radial distance indices should tend toward '1' and '0', respectively, to indicate adequate edge preservation. The results suggest that ADLG outperforms the four speckle removal filters compared with respect to simulated and real BUS images. For each method--ADLG, CADF, SRAD, TOAD and ISFAD--the figure of merit median values are 0.83, 0.40, 0.39, 0.51 and 0.59, and the mean radial distance median results are 4.19, 6.29, 6.39, 6.43 and 5.88.
乳腺超声(BUS)被认为是乳腺X线摄影诊断癌症最重要的辅助方法。然而,这种成像方式存在一种称为斑点噪声的固有伪像,它会降低空间分辨率和对比度分辨率,并使被筛查的解剖结构变得模糊。因此,例如在通过计算机辅助诊断系统进行图像分析之前,有必要减少斑点伪像。此外,斑点减少方案应解决平滑程度与病变轮廓细节保留之间的权衡问题。在这种情况下,我们提出了一种基于对数伽柏滤波器引导的各向异性扩散(ADLG)的乳腺超声去斑方法。因为我们假设不同的乳腺组织具有不同的纹理,所以在我们的方法中,我们使用对数伽柏滤波器对乳腺超声图像进行多通道分解。接下来,使用纹理响应而不是最初所述的强度值来计算各向异性扩散滤波的传导系数。所提出的算法分别使用包含900张和50张图像的合成乳腺数据集和真实乳腺数据集进行了验证。将性能指标与四种基于各向异性扩散的现有斑点减少方案进行了比较:传统各向异性扩散滤波(CADF)、斑点减少各向异性扩散(SRAD)、纹理导向各向异性扩散(TOAD)以及基于干扰的斑点滤波后接各向异性扩散(ISFAD)。对于合成图像,有效性指标是普拉特优值;对于真实超声图像,有效性指标是平均径向距离(以像素为单位)。优值和平均径向距离指标应分别趋向于“1”和“0”,以表明边缘保留情况良好。结果表明,与模拟和真实乳腺超声图像相比,ADLG在去除斑点方面优于其他四种滤波器。对于每种方法——ADLG、CADF、SRAD、TOAD和ISFAD——优值中位数分别为0.83、,0.40、0.39、0.51和0.59,平均径向距离中位数结果分别为4.19、6.29、6.39、6.43和5.88。