Aguado Ana, Capote Nieves, Romero Fernando, Dodd Ian C, Colmenero-Flores José M
IFAPA Las Torres-Tomejil, Carretera Sevilla-Cazalla Km 12.2, Alcalá del Río, 41200 Sevilla, Spain; Unidad Asociada al CSIC "Sostenibilidad de los recursos naturales agua y suelo en agroecosistemas áridos y semiáridos" (IFAPA Las Torres-Tomejil-IRNAS), Sevilla, Spain.
IFAPA Las Torres-Tomejil, Carretera Sevilla-Cazalla Km 12.2, Alcalá del Río, 41200 Sevilla, Spain.
Plant Sci. 2014 Oct;227:37-44. doi: 10.1016/j.plantsci.2014.06.009. Epub 2014 Jun 20.
To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms.
为了研究土壤水分异质性对植物生理以及根和叶中基因表达的影响,对根系分置于两个隔室生长的向日葵植株实施了三种处理:一种对照(C)处理,提供植物蒸散量的100%;两种处理各提供植物蒸散量的50%,一种是均匀分配到两个隔室(亏缺灌溉 - DI),另一种是不均匀分配以确保形成明显的干湿隔室(部分根区干燥 - PRD)。在两种灌溉系统下,接受相同水量的植物表现出不同的反应。3天后,C处理和DI处理的蒸散量相似,但PRD处理的蒸散量少20%,同时叶片水势(Ψleaf)降低,叶片木质部脱落酸浓度增加。在PRD植株干燥土壤隔室中生长的根中,六个水分胁迫响应基因被高度诱导,其表达与当地土壤含水量的相关性最好。另一方面,叶片基因表达与根中的表达显著不同,并且与木质部脱落酸浓度和Ψleaf的相关性更好。虽然PRD灌溉策略引发了更强的生理和分子反应,表明由于PRD植株干燥隔室的局部脱水导致更强烈和系统性的胁迫反应,但DI策略在不强烈诱导这些反应的情况下实现了类似的节水效果。关联PRD/DI植株中的生理和分子反应可能有助于深入了解水分亏缺的严重程度和位置,并可能有助于更好地理解长距离信号传导机制。