Suppr超能文献

使用不同葡萄糖浓度,通过4至8小时的延长腹膜平衡试验测量腹膜吸收情况。

Measuring peritoneal absorption with the prolonged peritoneal equilibration test from 4 to 8 hours using various glucose concentrations.

作者信息

Teixidó-Planas Josep, Troya-Saborido Maria Isabel, Pedreira-Robles Guillermo, Del-Rio-Lafuente Milagros, Romero-Gonzalez Ramon, Bonet-Sol Josep

机构信息

Nephrology Department, Hospital Universitari, and Fundació Institut d'Investigació en Ciències de la Salut, Germans Trias i Pujol, Barcelona, Spain Nephrology Department, Hospital Universitari, and Fundació Institut d'Investigació en Ciències de la Salut, Germans Trias i Pujol, Barcelona, Spain.

Nephrology Department, Hospital Universitari, and Fundació Institut d'Investigació en Ciències de la Salut, Germans Trias i Pujol, Barcelona, Spain.

出版信息

Perit Dial Int. 2014 Sep-Oct;34(6):605-11. doi: 10.3747/pdi.2013.00235.

Abstract

BACKGROUND

Peritoneal fluid flows such as small-pore ultrafiltration and free water transport can now be calculated by means of the modified peritoneal equilibration test (PET). To calculate peritoneal fluid absorption, volume markers have been used, but that method is not easily applicable in clinical practice. Alternatively, absorption can be estimated using the personal dialysis capacity test. However, a method of measuring overall peritoneal absorption together with the PET is lacking. The aim of the present study was to assess whether overall peritoneal absorption was different when measured from the 4th to 8th hour in a prolonged PET using three different glucose solutions.

METHODS

The study enrolled 32 stable peritoneal dialysis (PD) patients from a tertiary university hospital, who underwent three 8-hour prolonged PETs with 1.36%, 2.27%, and 3.86% glucose solution. The PETs were performed in random order over a period of less than 1 month. During the prolonged PET, the peritoneal volume was emptied and reinfused at 60 and 240 minutes and drained at 480 minutes. Peritoneal absorption was calculated as the volume difference between the 4th and the 8th hour.

RESULTS

The dialysate-to-plasma ratio (D/P) of urea, the D/P creatinine, and the mass transfer area coefficient (MTC) of creatinine at 240 minutes were not significantly different with the three glucose solutions. The end-to-initial (D/D0) glucose, MTC urea, and MTC glucose were significantly different. All water transport parameters were significantly different, except for the 4- to 8-hour absorption volumes and rates. The peritoneal absorption rates were, for 1.36% solution, 1.03 ± 0.58 mL/min [95% confidence interval (CI): 0.83 to 1.24 mL/min]; for 2.27% solution, 0.86 ± 0.71 mL/min (95% CI: 0.61 to 1.11 mL/min); and for 3.86% solution, 1.05 ± 0.78 mL/min (95% CI: 0.77 to 1.33 mL/min). Peritoneal absorption volumes and rates from the 4th to the 8th hour showed good correlations for the various solutions.

CONCLUSIONS

Using any glucose solution, the prolonged PET with voiding and reinfusion at the 4th hour could be a practical method for calculating overall peritoneal absorption from the 4th to the 8th hour in PD patients.

摘要

背景

目前可通过改良腹膜平衡试验(PET)计算诸如小孔超滤和自由水转运等腹膜液流量。为计算腹膜液吸收量,已使用体积标记物,但该方法在临床实践中不易应用。另外,可使用个人透析能力试验估算吸收量。然而,缺乏一种与PET一起测量总体腹膜吸收的方法。本研究的目的是评估在使用三种不同葡萄糖溶液的延长PET中,从第4小时到第8小时测量时总体腹膜吸收是否存在差异。

方法

本研究纳入了一家三级大学医院的32例稳定腹膜透析(PD)患者,他们分别使用1.36%、2.27%和3.86%的葡萄糖溶液进行了三次8小时的延长PET。PET以随机顺序在不到1个月的时间内进行。在延长PET期间,在60分钟和240分钟时排空并重新注入腹膜腔液,在480分钟时引流。腹膜吸收量计算为第4小时和第8小时之间的体积差。

结果

三种葡萄糖溶液在240分钟时尿素的透析液与血浆比值(D/P)、肌酐的D/P以及肌酐的传质面积系数(MTC)无显著差异。终末与初始(D/D0)葡萄糖、MTC尿素和MTC葡萄糖有显著差异。除4至8小时的吸收量和速率外所有水转运参数均有显著差异。1.36%溶液的腹膜吸收速率为1.03±0.58 mL/分钟[95%置信区间(CI):0.83至1.24 mL/分钟];2.27%溶液为0.86±0.71 mL/分钟(95%CI:0.61至1.11 mL/分钟);3.86%溶液为1.05±0.78 mL/分钟(95%CI:0.77至1.33 mL/分钟)。不同溶液在第4小时到第8小时的腹膜吸收量和速率显示出良好的相关性。

结论

使用任何葡萄糖溶液,在第4小时进行排空和重新注入的延长PET可能是计算PD患者第4小时到第8小时总体腹膜吸收的一种实用方法。

相似文献

2
Peritoneal total protein transport assessed from peritoneal equilibration tests using different dialysate glucose concentrations.
Perit Dial Int. 2010 Sep-Oct;30(5):549-57. doi: 10.3747/pdi.2009.00127. Epub 2010 Apr 8.
3
Fluid Tonicity Affects Peritoneal Characteristics Derived by 3-Pore Model.
Perit Dial Int. 2019 May-Jun;39(3):243-251. doi: 10.3747/pdi.2017.00267. Epub 2019 Jan 18.
8
A quantitative description of solute and fluid transport during peritoneal dialysis.
Kidney Int. 1992 May;41(5):1320-32. doi: 10.1038/ki.1992.196.

引用本文的文献

2
Modelling of icodextrin hydrolysis and kinetics during peritoneal dialysis.
Sci Rep. 2023 Apr 21;13(1):6526. doi: 10.1038/s41598-023-33480-w.
3
A Uremic Pig Model for Peritoneal Dialysis.
Toxins (Basel). 2022 Sep 14;14(9):635. doi: 10.3390/toxins14090635.

本文引用的文献

1
Sequential peritoneal equilibration test: a new method for assessment and modelling of peritoneal transport.
Nephrol Dial Transplant. 2013 Feb;28(2):447-54. doi: 10.1093/ndt/gfs592.
2
Threefold peritoneal test of osmotic conductance, ultrafiltration efficiency, and fluid absorption.
Perit Dial Int. 2013 Jul-Aug;33(4):419-25. doi: 10.3747/pdi.2011.00329. Epub 2013 Feb 1.
3
Peritoneal dialysis membrane evaluation in clinical practice.
Contrib Nephrol. 2012;178:232-237. doi: 10.1159/000337884. Epub 2012 May 25.
4
Peritoneal transport testing.
J Nephrol. 2010 Nov-Dec;23(6):633-47.
5
Evaluation of peritoneal membrane characteristics: clinical advice for prescription management by the ERBP working group.
Nephrol Dial Transplant. 2010 Jul;25(7):2052-62. doi: 10.1093/ndt/gfq100. Epub 2010 Mar 4.
10
Distributed model of peritoneal transport: implications of the endothelial glycocalyx.
Nephrol Dial Transplant. 2008 Jul;23(7):2142-6. doi: 10.1093/ndt/gfn055. Epub 2008 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验