Suppr超能文献

突发探索通过新颖性管理。

Emergent exploration via novelty management.

机构信息

Departments of Neurobiology and.

Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

J Neurosci. 2014 Sep 17;34(38):12646-61. doi: 10.1523/JNEUROSCI.1872-14.2014.

Abstract

When encountering novel environments, animals perform complex yet structured exploratory behaviors. Despite their typical structuring, the principles underlying exploratory patterns are still not sufficiently understood. Here we analyzed exploratory behavioral data from two modalities: whisking and locomotion in rats and mice. We found that these rodents maximized novelty signal-to-noise ratio during each exploration episode, where novelty is defined as the accumulated information gain. We further found that these rodents maximized novelty during outbound exploration, used novelty-triggered withdrawal-like retreat behavior, and explored the environment in a novelty-descending sequence. We applied a hierarchical curiosity model, which incorporates these principles, to both modalities. We show that the model captures the major components of exploratory behavior in multiple timescales: single excursions, exploratory episodes, and developmental timeline. The model predicted that novelty is managed across exploratory modalities. Using a novel experimental setup in which mice encountered a novel object for the first time in their life, we tested and validated this prediction. Further predictions, related to the development of brain circuitry, are described. This study demonstrates that rodents select exploratory actions according to a novelty management framework and suggests a plausible mechanism by which mammalian exploration primitives can be learned during development and integrated in adult exploration of complex environments.

摘要

当遇到新环境时,动物会表现出复杂但有结构的探索行为。尽管它们的行为具有典型的结构,但探索模式背后的原理仍未得到充分理解。在这里,我们分析了来自两种模式的数据:大鼠和小鼠的胡须摆动和运动。我们发现,这些啮齿动物在每次探索过程中都最大限度地提高了新奇感的信噪比,新奇感定义为累积的信息增益。我们进一步发现,这些啮齿动物在外出探索时最大化了新奇感,使用新奇感触发的类似撤退的回避行为,并按照新奇度递减的顺序探索环境。我们应用了一个层次化好奇心模型,该模型包含了这些原理,适用于两种模式。我们表明,该模型在多个时间尺度上捕捉了探索行为的主要组成部分:单次探索、探索事件和发展时间表。该模型预测,新奇感在探索模式之间是可以被管理的。我们使用一种新的实验设置,其中小鼠在其一生中第一次遇到一个新物体,对该预测进行了测试和验证。还描述了与大脑回路发育相关的进一步预测。这项研究表明,啮齿动物根据新奇感管理框架选择探索行为,并提出了一个合理的机制,说明哺乳动物的探索基元可以在发育过程中被学习,并整合到成年对复杂环境的探索中。

相似文献

1
Emergent exploration via novelty management.突发探索通过新颖性管理。
J Neurosci. 2014 Sep 17;34(38):12646-61. doi: 10.1523/JNEUROSCI.1872-14.2014.
2
Learning and control of exploration primitives.探索原语的学习与控制。
J Comput Neurosci. 2014 Oct;37(2):259-80. doi: 10.1007/s10827-014-0500-1. Epub 2014 May 7.
3
Hierarchical curiosity loops and active sensing.分层好奇心循环与主动感知。
Neural Netw. 2012 Aug;32:119-29. doi: 10.1016/j.neunet.2012.02.024. Epub 2012 Feb 14.
4
Reinforcement active learning in the vibrissae system: optimal object localization.触须系统中的强化主动学习:最优目标定位
J Physiol Paris. 2013 Jan-Apr;107(1-2):107-15. doi: 10.1016/j.jphysparis.2012.06.004. Epub 2012 Jul 9.
7
Strategy change in vibrissal active sensing during rat locomotion.大鼠运动过程中触须主动感知策略的改变。
Curr Biol. 2014 Jul 7;24(13):1507-12. doi: 10.1016/j.cub.2014.05.036. Epub 2014 Jun 19.
9
The development of whisker control in rats in relation to locomotion.大鼠触须控制与运动的关系发展。
Dev Psychobiol. 2012 Mar;54(2):151-68. doi: 10.1002/dev.20591. Epub 2011 Aug 23.

引用本文的文献

7
Intermale aggression in mice, selected for the cognitive trait.针对认知特征进行选育的小鼠的雄性间攻击行为。
Dokl Biol Sci. 2017 Jul;475(1):151-153. doi: 10.1134/S001249661704010X. Epub 2017 Sep 1.
9
Behavioural plasticity in evolving robots.进化机器人中的行为可塑性。
Theory Biosci. 2016 Dec;135(4):201-216. doi: 10.1007/s12064-016-0233-y. Epub 2016 Jul 21.

本文引用的文献

1
Does neophobia necessarily imply fear or anxiety?新恐惧症必然意味着恐惧或焦虑吗?
Behav Processes. 1986 Jan;12(1):45-50. doi: 10.1016/0376-6357(86)90069-0.
2
Learning and control of exploration primitives.探索原语的学习与控制。
J Comput Neurosci. 2014 Oct;37(2):259-80. doi: 10.1007/s10827-014-0500-1. Epub 2014 May 7.
3
The exploration-exploitation dilemma: a multidisciplinary framework.探索-开发困境:一个多学科框架。
PLoS One. 2014 Apr 22;9(4):e95693. doi: 10.1371/journal.pone.0095693. eCollection 2014.
4
Functional connectivity of the entorhinal-hippocampal space circuit.内嗅皮层-海马空间回路的功能连接性
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120516. doi: 10.1098/rstb.2012.0516. Print 2014 Feb 5.
5
Coding of object location in the vibrissal thalamocortical system.触须丘脑皮质系统中物体位置的编码
Cereb Cortex. 2015 Mar;25(3):563-77. doi: 10.1093/cercor/bht241. Epub 2013 Sep 22.
7
Learning and exploration in action-perception loops.动作感知循环中的学习与探索。
Front Neural Circuits. 2013 Mar 22;7:37. doi: 10.3389/fncir.2013.00037. eCollection 2013.
8
The multifunctional mesencephalic locomotor region.中脑多功能运动区
Curr Pharm Des. 2013;19(24):4448-70. doi: 10.2174/1381612811319240011.
10
Barrel cortex function.桶状皮层功能。
Prog Neurobiol. 2013 Apr;103:3-27. doi: 10.1016/j.pneurobio.2012.11.002. Epub 2012 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验