Broekhuis Joost R, Verhey Kristen J, Jansen Gert
Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands.
Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.
PLoS One. 2014 Sep 22;9(9):e108470. doi: 10.1371/journal.pone.0108470. eCollection 2014.
Primary cilia are important sensory organelles. They exist in a wide variety of lengths, which could reflect different cell-specific functions. How cilium length is regulated is unclear, but it probably involves intraflagellar transport (IFT), which transports protein complexes along the ciliary axoneme. Studies in various organisms have identified the small, conserved family of ros-cross hybridizing kinases (RCK) as regulators of cilium length. Here we show that Intestinal Cell Kinase (ICK) and MAPK/MAK/MRK overlapping kinase (MOK), two members of this family, localize to cilia of mouse renal epithelial (IMCD-3) cells and negatively regulate cilium length. To analyze the effects of ICK and MOK on the IFT machinery, we set up live imaging of five fluorescently tagged IFT proteins: KIF3B, a subunit of kinesin-II, the main anterograde IFT motor, complex A protein IFT43, complex B protein IFT20, BBSome protein BBS8 and homodimeric kinesin KIF17, whose function in mammalian cilia is unclear. Interestingly, all five proteins moved at ∼0.45 µm/s in anterograde and retrograde direction, suggesting they are all transported by the same machinery. Moreover, GFP tagged ICK and MOK moved at similar velocities as the IFT proteins, suggesting they are part of, or transported by the IFT machinery. Indeed, loss- or gain-of-function of ICK affected IFT speeds: knockdown increased anterograde velocities, whereas overexpression reduced retrograde speed. In contrast, MOK knockdown or overexpression did not affect IFT speeds. Finally, we found that the effects of ICK or MOK knockdown on cilium length and IFT are suppressed by rapamycin treatment, suggesting that these effects require the mTORC1 pathway. Our results confirm the importance of RCK kinases as regulators of cilium length and IFT. However, whereas some of our results suggest a direct correlation between cilium length and IFT speed, other results indicate that cilium length can be modulated independent of IFT speed.
初级纤毛是重要的感觉细胞器。它们存在多种长度,这可能反映了不同的细胞特异性功能。纤毛长度是如何调节的尚不清楚,但可能涉及鞭毛内运输(IFT),即沿着纤毛轴丝运输蛋白质复合物。对多种生物体的研究已确定小的、保守的罗氏交叉杂交激酶(RCK)家族是纤毛长度的调节因子。在此我们表明,该家族的两个成员,肠细胞激酶(ICK)和丝裂原活化蛋白激酶/MAK/MRK重叠激酶(MOK),定位于小鼠肾上皮(IMCD-3)细胞的纤毛,并对纤毛长度起负调节作用。为了分析ICK和MOK对IFT机制的影响,我们对五种荧光标记的IFT蛋白进行了实时成像:驱动蛋白-II的一个亚基KIF3B,它是主要的正向IFT马达;复合体A蛋白IFT43;复合体B蛋白IFT20;BBSome蛋白BBS8;以及同型二聚体驱动蛋白KIF17,其在哺乳动物纤毛中的功能尚不清楚。有趣的是,所有这五种蛋白在正向和逆向的移动速度均约为0.45μm/s,这表明它们都是由同一机制运输的。此外,绿色荧光蛋白标记的ICK和MOK的移动速度与IFT蛋白相似,表明它们是IFT机制的一部分或由IFT机制运输。实际上,ICK的功能丧失或获得会影响IFT速度:敲低会增加正向速度,而过表达会降低逆向速度。相比之下,MOK的敲低或过表达并不影响IFT速度。最后,我们发现雷帕霉素处理可抑制ICK或MOK敲低对纤毛长度和IFT的影响,这表明这些影响需要mTORC1途径。我们的结果证实了RCK激酶作为纤毛长度和IFT调节因子的重要性。然而,虽然我们的一些结果表明纤毛长度与IFT速度之间存在直接关联,但其他结果表明纤毛长度可以独立于IFT速度进行调节。