Departments of †Chemistry and ‡Biology, §Center for Biotechnology and Drug Design, and ∥Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States.
Biochemistry. 2014 Oct 21;53(41):6574-83. doi: 10.1021/bi500917q. Epub 2014 Oct 7.
The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the α-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ≤4 Å from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ∼10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms.
黄素介导的氨基酸中 CN 键的酶促氧化可以通过氢化物转移、碳负离子或极性亲核机制发生。先前使用多种氘动力学同位素效应 (KIE) 和计算研究对铜绿假单胞菌 (PaDADH) 的 D-精氨酸脱氢酶的研究结果表明,底物的 α-氨基质子化优先结合,NH 和 CH 键的断裂以异步方式发生,与三种可能的机制一致。Y53 和 Y249 的羟基与反应产物亚氨基精氨酸的亚氨基和羧基之间的距离≤4 Å,表明它们参与结合和催化。在这项研究中,我们使用底物和溶剂氘 KIE、溶剂粘度和 pH 值效应以及量子力学/分子力学计算方法研究了 PaDADH 的 Y53F 和 Y249F 变体的还原半反应,以深入了解酪氨酸的催化作用,并评估它们的突变是否影响底物氧化的过渡态。Y53F 和 Y249F 酶均以类似于野生型酶的稳态动力学参数氧化 D-精氨酸。用 D-亮氨酸(一种适合快速动力学的缓慢底物)进行黄素还原 (k(red)) 的速率常数比野生型值小 3 倍,且未质子化基团的 pKa 值相似,约为 10.0。在变体和野生型酶中观察到 (app)Kd 的相似 pKa 值。然而,在酶变体中,底物 NH 和 CH 键的断裂以同步方式发生,如 k(red) 上的多个氘 KIE 所表明的那样。这些数据可以与氢化物转移机制相协调,但不能与碳负离子和极性亲核机制相协调。