Suppr超能文献

形状流形上动力学的子空间学习:一种生成式建模方法。

Subspace learning of dynamics on a shape manifold: a generative modeling approach.

出版信息

IEEE Trans Image Process. 2014 Nov;23(11):4907-19. doi: 10.1109/TIP.2014.2358200.

Abstract

In this paper, we propose a novel subspace learning algorithm of shape dynamics. Compared to the previous works, our method is invertible and better characterizes the nonlinear geometry of a shape manifold while retaining a good computational efficiency. In this paper, using a parallel moving frame on a shape manifold, each path of shape dynamics is uniquely represented in a subspace spanned by the moving frame, given an initial condition (the starting point and starting frame). Mathematically, such a representation may be formulated as solving a manifold-valued differential equation, which provides a generative modeling of high-dimensional shape dynamics in a lower dimensional subspace. Given the parallelism and a path on a shape manifold, the parallel moving frame along the path is uniquely determined up to the choice of the starting frame. With an initial frame, we minimize the reconstruction error from the subspace to shape manifold. Such an optimization characterizes well the Riemannian geometry of the manifold by imposing parallelism (equivalent as a Riemannian metric) constraints on the moving frame. The parallelism in this paper is defined by a Levi-Civita connection, which is consistent with the Riemannian metric of the shape manifold. In the experiments, the performance of the subspace learning is extensively evaluated using two scenarios: 1) how the high dimensional geometry is characterized in the subspace and 2) how the reconstruction compares with the original shape dynamics. The results demonstrate and validate the theoretical advantages of the proposed approach.

摘要

本文提出了一种新的形状动力学子空间学习算法。与以往的工作相比,我们的方法是可逆的,更好地刻画了形状流形的非线性几何,同时保持了良好的计算效率。在本文中,我们使用形状流形上的平行移动框架,对于给定的初始条件(起始点和起始框架),将形状动力学的每条路径唯一地表示在移动框架所张成的子空间中。从数学上讲,这样的表示可以形式化为求解一个流形值微分方程,该方程为高维形状动力学在低维子空间中提供了一种生成模型。给定平行性和形状流形上的一条路径,沿着该路径的平行移动框架在初始框架的选择下是唯一确定的。给定初始框架,我们从子空间到形状流形的重建误差最小化。这种优化通过在移动框架上施加平行性(等效于黎曼度量)约束来很好地刻画流形的黎曼几何。本文中的平行性由黎曼联络定义,它与形状流形的黎曼度量一致。在实验中,使用两种情况广泛评估了子空间学习的性能:1)高维几何如何在子空间中得到刻画,2)重建与原始形状动力学的比较。结果证明和验证了所提出方法的理论优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验