Suppr超能文献

动作电位在决定神经元类型对一氧化氮的特异性反应中的作用。

The role of action potentials in determining neuron-type-specific responses to nitric oxide.

作者信息

Estes Stephen, Zhong Lei Ray, Artinian Liana, Tornieri Karine, Rehder Vincent

机构信息

Department of Biology, Georgia State University, Atlanta, Georgia, 30302.

出版信息

Dev Neurobiol. 2015 May;75(5):435-51. doi: 10.1002/dneu.22233. Epub 2014 Oct 9.

Abstract

The electrical activity in developing and mature neurons determines the intracellular calcium concentration ([Ca(2+)]i), which in turn is translated into biochemical activities through various signaling cascades. Electrical activity is under control of neuromodulators, which can alter neuronal responses to incoming signals and increase the fidelity of neuronal communication. Conversely, the effects of neuromodulators can depend on the ongoing electrical activity within target neurons; however, these activity-dependent effects of neuromodulators are less well understood. Here, we present evidence that the neuronal firing frequency and intrinsic properties of the action potential (AP) waveform set the [Ca(2+)]i in growth cones and determine how neurons respond to the neuromodulator nitric oxide (NO). We used two well-characterized neurons from the freshwater snail Helisoma trivolvis that show different growth cone morphological responses to NO: B5 neurons elongate filopodia, while those of B19 neurons do not. Combining whole-cell patch clamp recordings with simultaneous calcium imaging, we show that the duration of an AP contributes to neuron-specific differences in [Ca(2+)]i, with shorter APs in B19 neurons yielding lower growth cone [Ca(2+)]i. Through the partial inhibition of voltage-gated K(+) channels, we increased the B19 AP duration resulting in a significant increase in [Ca(2+)]i that was then sufficient to cause filopodial elongation following NO treatment. Our results demonstrate a neuron-type specific correlation between AP shape, [Ca(2+)]i, and growth cone motility, providing an explanation to how growth cone responses to guidance cues depend on intrinsic electrical properties and helping explain the diverse effects of NO across neuronal populations.

摘要

发育中和成熟神经元中的电活动决定了细胞内钙浓度([Ca(2+)]i),而后者又通过各种信号级联反应转化为生化活动。电活动受神经调质的控制,神经调质可改变神经元对传入信号的反应,并提高神经元通讯的保真度。相反,神经调质的作用可能取决于靶神经元内正在进行的电活动;然而,神经调质的这些活动依赖性作用尚不太为人所知。在此,我们提供证据表明,神经元的放电频率和动作电位(AP)波形的内在特性设定了生长锥中的[Ca(2+)]i,并决定了神经元对神经调质一氧化氮(NO)的反应方式。我们使用了淡水蜗牛三角帆蚌中两个特征明确的神经元,它们对NO表现出不同的生长锥形态反应:B5神经元的丝状伪足伸长,而B19神经元的则不然。将全细胞膜片钳记录与同步钙成像相结合,我们发现AP的持续时间导致了[Ca(2+)]i的神经元特异性差异,B19神经元中较短的AP产生较低的生长锥[Ca(2+)]i。通过部分抑制电压门控K(+)通道,我们增加了B19 AP的持续时间,导致[Ca(2+)]i显著增加,这足以在NO处理后引起丝状伪足伸长。我们的结果证明了AP形状、[Ca(2+)]i和生长锥运动性之间存在神经元类型特异性相关性,为生长锥对导向线索的反应如何依赖于内在电特性提供了解释,并有助于解释NO在不同神经元群体中的多样作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验