Suppr超能文献

在大花荠苨的编码区和保守非编码区存在广泛正选择和负选择的证据。

Evidence for widespread positive and negative selection in coding and conserved noncoding regions of Capsella grandiflora.

作者信息

Williamson Robert J, Josephs Emily B, Platts Adrian E, Hazzouri Khaled M, Haudry Annabelle, Blanchette Mathieu, Wright Stephen I

机构信息

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.

Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada; School for Computer Science, McGill University, Montreal, Quebec, Canada.

出版信息

PLoS Genet. 2014 Sep 25;10(9):e1004622. doi: 10.1371/journal.pgen.1004622. eCollection 2014 Sep.

Abstract

The extent that both positive and negative selection vary across different portions of plant genomes remains poorly understood. Here, we sequence whole genomes of 13 Capsella grandiflora individuals and quantify the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we show that selection is strong in coding regions, but weak in most noncoding regions, with the exception of 5' and 3' untranslated regions (UTRs). However, estimates of selection on noncoding regions conserved across the Brassicaceae family show strong signals of selection. Additionally, we see reductions in neutral diversity around functional substitutions in both coding and conserved noncoding regions, indicating recent selective sweeps at these sites. Finally, using expression data from leaf tissue we show that genes that are more highly expressed experience stronger negative selection but comparable levels of positive selection to lowly expressed genes. Overall, we observe widespread positive and negative selection in coding and regulatory regions, but our results also suggest that both positive and negative selection on plant noncoding sequence are considerably rarer than in animal genomes.

摘要

正向选择和负向选择在植物基因组不同部分的变化程度仍知之甚少。在此,我们对13个大花荠苨个体的全基因组进行测序,并量化全基因组的选择量。利用适合度效应分布的估计值,我们发现选择在编码区很强,但在大多数非编码区较弱,5'和3'非翻译区(UTR)除外。然而,对十字花科家族保守的非编码区的选择估计显示出强烈的选择信号。此外,我们在编码区和保守非编码区的功能替代周围观察到中性多样性的降低,表明这些位点最近发生了选择性清除。最后,利用叶片组织的表达数据,我们表明表达水平较高的基因经历更强的负向选择,但与低表达基因的正向选择水平相当。总体而言,我们在编码区和调控区观察到广泛的正向和负向选择,但我们的结果也表明,植物非编码序列上的正向和负向选择都比动物基因组中少见得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c657/4178662/6ff3a72d118f/pgen.1004622.g001.jpg

相似文献

1
Evidence for widespread positive and negative selection in coding and conserved noncoding regions of Capsella grandiflora.
PLoS Genet. 2014 Sep 25;10(9):e1004622. doi: 10.1371/journal.pgen.1004622. eCollection 2014 Sep.
2
Selection on Accessible Chromatin Regions in Capsella grandiflora.
Mol Biol Evol. 2021 Dec 9;38(12):5563-5575. doi: 10.1093/molbev/msab270.
5
An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions.
Nat Genet. 2013 Aug;45(8):891-8. doi: 10.1038/ng.2684. Epub 2013 Jun 30.
6
Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1087-1092. doi: 10.1073/pnas.1612561114. Epub 2017 Jan 17.
8
Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2806-11. doi: 10.1073/pnas.1412277112. Epub 2015 Feb 17.
10

引用本文的文献

1
The transcriptome of the olm provides insights into its evolution and gene expression.
Sci Rep. 2025 Aug 3;15(1):28324. doi: 10.1038/s41598-025-10073-3.
2
Genomic Patterns of Loss of Distyly and Polyploidization in Primroses.
Mol Biol Evol. 2025 Jul 30;42(8). doi: 10.1093/molbev/msaf162.
6
Fixation of Expression Divergences by Natural Selection in Coding Genes.
Int J Mol Sci. 2024 Dec 22;25(24):13710. doi: 10.3390/ijms252413710.
9
Transcriptome analysis of infecting strawberry identified RXLR effectors that induce cell death when transiently expressed in .
Front Plant Sci. 2024 May 24;15:1379970. doi: 10.3389/fpls.2024.1379970. eCollection 2024.

本文引用的文献

1
The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq.
Biology (Basel). 2012 Oct 25;1(3):575-96. doi: 10.3390/biology1030575.
2
The impact of linked selection on plant genomic variation.
Brief Funct Genomics. 2014 Jul;13(4):268-75. doi: 10.1093/bfgp/elu009. Epub 2014 Apr 23.
3
Contributions of protein-coding and regulatory change to adaptive molecular evolution in murid rodents.
PLoS Genet. 2013;9(12):e1003995. doi: 10.1371/journal.pgen.1003995. Epub 2013 Dec 5.
5
Population genomics of rapid adaptation by soft selective sweeps.
Trends Ecol Evol. 2013 Nov;28(11):659-69. doi: 10.1016/j.tree.2013.08.003. Epub 2013 Sep 25.
6
An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions.
Nat Genet. 2013 Aug;45(8):891-8. doi: 10.1038/ng.2684. Epub 2013 Jun 30.
7
Selection, genome-wide fitness effects and evolutionary rates in the model legume Medicago truncatula.
Mol Ecol. 2013 Jul;22(13):3525-38. doi: 10.1111/mec.12329. Epub 2013 Jun 15.
8
The Capsella rubella genome and the genomic consequences of rapid mating system evolution.
Nat Genet. 2013 Jul;45(7):831-5. doi: 10.1038/ng.2669. Epub 2013 Jun 9.
9
Genome-wide inference of natural selection on human transcription factor binding sites.
Nat Genet. 2013 Jul;45(7):723-9. doi: 10.1038/ng.2658. Epub 2013 Jun 9.
10
Differential requirements for mRNA folding partially explain why highly expressed proteins evolve slowly.
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):E678-86. doi: 10.1073/pnas.1218066110. Epub 2013 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验