Suppr超能文献

在嗜麦芽窄食单胞菌脂肪酶中引入盐桥会导致热稳定性大幅提高。

Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability.

作者信息

Wu Jian-Ping, Li Mu, Zhou Yong, Yang Li-Rong, Xu Gang

机构信息

Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.

出版信息

Biotechnol Lett. 2015 Feb;37(2):403-7. doi: 10.1007/s10529-014-1683-2. Epub 2014 Sep 26.

Abstract

High thermostability of enzymes is a prerequisite for their biotechnological applications. An organic solvent-tolerant and cold-active lipase, from the Stenotrophomonas maltophilia, was unstable above 40 °C in previous studies. To increase the enzyme stability, possible hydrogen-bond networks were simulated by the introduction of a salt bridge in a highly flexible region of the protein. Compared with the wild-type lipase, a mutant lipase (G165D and F73R) showed a >900-fold improvement in half-life at 50 °C, with the optimal activity-temperature increasing from 35 to 90 °C. Therefore, the hydrogen-bond strategy is a powerful approach for improving enzyme stability through the introduction of a salt bridge.

摘要

酶的高热稳定性是其生物技术应用的前提条件。在之前的研究中,嗜麦芽窄食单胞菌来源的一种耐有机溶剂且具有冷活性的脂肪酶在40℃以上不稳定。为提高该酶的稳定性,通过在蛋白质高度灵活的区域引入盐桥来模拟可能的氢键网络。与野生型脂肪酶相比,一种突变脂肪酶(G165D和F73R)在50℃下的半衰期提高了900倍以上,最佳活性温度从35℃提高到90℃。因此,氢键策略是通过引入盐桥来提高酶稳定性的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验