Wu Jian-Ping, Li Mu, Zhou Yong, Yang Li-Rong, Xu Gang
Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
Biotechnol Lett. 2015 Feb;37(2):403-7. doi: 10.1007/s10529-014-1683-2. Epub 2014 Sep 26.
High thermostability of enzymes is a prerequisite for their biotechnological applications. An organic solvent-tolerant and cold-active lipase, from the Stenotrophomonas maltophilia, was unstable above 40 °C in previous studies. To increase the enzyme stability, possible hydrogen-bond networks were simulated by the introduction of a salt bridge in a highly flexible region of the protein. Compared with the wild-type lipase, a mutant lipase (G165D and F73R) showed a >900-fold improvement in half-life at 50 °C, with the optimal activity-temperature increasing from 35 to 90 °C. Therefore, the hydrogen-bond strategy is a powerful approach for improving enzyme stability through the introduction of a salt bridge.
酶的高热稳定性是其生物技术应用的前提条件。在之前的研究中,嗜麦芽窄食单胞菌来源的一种耐有机溶剂且具有冷活性的脂肪酶在40℃以上不稳定。为提高该酶的稳定性,通过在蛋白质高度灵活的区域引入盐桥来模拟可能的氢键网络。与野生型脂肪酶相比,一种突变脂肪酶(G165D和F73R)在50℃下的半衰期提高了900倍以上,最佳活性温度从35℃提高到90℃。因此,氢键策略是通过引入盐桥来提高酶稳定性的有效方法。