Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada.
Anal Chem. 2014 Nov 4;86(21):10591-9. doi: 10.1021/ac502203d. Epub 2014 Oct 20.
We introduce a fast computational method for feature selection that facilitates the accurate spectral analysis of a chemical species of interest in the presence of overlapping uncorrelated variance. Using a genetic algorithm in a data-driven approach, our method assigns predictors according to a template determined to minimize prediction variance in a calibration space. This template-oriented genetic algorithm (TOGA) efficiently establishes features of greatest significance and determines their optimal combination. We demonstrate the efficacy of TOGA using an elementary model system in which we seek to quantify a target monosaccharide in mixtures containing other sugars added in random amounts. The results establish TOGA as an effective and reliable technique for isolating signature spectra of targeted substances in complex mixtures.
我们介绍了一种快速的计算方法,用于特征选择,该方法能够在存在重叠的不相关方差的情况下,准确地分析感兴趣的化学物质的光谱。我们的方法使用遗传算法在数据驱动的方法中,根据模板分配预测器,该模板旨在最小化校准空间中的预测方差。这种面向模板的遗传算法 (TOGA) 有效地建立了最重要的特征,并确定了它们的最佳组合。我们使用一个基本的模型系统来证明 TOGA 的有效性,在该系统中,我们试图在随机添加其他糖的混合物中定量分析目标单糖。结果表明,TOGA 是一种有效的、可靠的技术,可用于分离复杂混合物中目标物质的特征光谱。