Suppr超能文献

输入数据不确定性对环境暴露评估模型的影响:以手机基站电磁场建模为例

Impact of input data uncertainty on environmental exposure assessment models: A case study for electromagnetic field modelling from mobile phone base stations.

作者信息

Beekhuizen Johan, Heuvelink Gerard B M, Huss Anke, Bürgi Alfred, Kromhout Hans, Vermeulen Roel

机构信息

Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.

Soil Geography and Landscape, Environmental Sciences Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.

出版信息

Environ Res. 2014 Nov;135:148-55. doi: 10.1016/j.envres.2014.05.038. Epub 2014 Sep 28.

Abstract

BACKGROUND

With the increased availability of spatial data and computing power, spatial prediction approaches have become a standard tool for exposure assessment in environmental epidemiology. However, such models are largely dependent on accurate input data. Uncertainties in the input data can therefore have a large effect on model predictions, but are rarely quantified.

METHODS

With Monte Carlo simulation we assessed the effect of input uncertainty on the prediction of radio-frequency electromagnetic fields (RF-EMF) from mobile phone base stations at 252 receptor sites in Amsterdam, The Netherlands. The impact on ranking and classification was determined by computing the Spearman correlations and weighted Cohen's Kappas (based on tertiles of the RF-EMF exposure distribution) between modelled values and RF-EMF measurements performed at the receptor sites.

RESULTS

The uncertainty in modelled RF-EMF levels was large with a median coefficient of variation of 1.5. Uncertainty in receptor site height, building damping and building height contributed most to model output uncertainty. For exposure ranking and classification, the heights of buildings and receptor sites were the most important sources of uncertainty, followed by building damping, antenna- and site location. Uncertainty in antenna power, tilt, height and direction had a smaller impact on model performance.

CONCLUSIONS

We quantified the effect of input data uncertainty on the prediction accuracy of an RF-EMF environmental exposure model, thereby identifying the most important sources of uncertainty and estimating the total uncertainty stemming from potential errors in the input data. This approach can be used to optimize the model and better interpret model output.

摘要

背景

随着空间数据可用性和计算能力的提高,空间预测方法已成为环境流行病学中暴露评估的标准工具。然而,此类模型在很大程度上依赖于准确的输入数据。因此,输入数据中的不确定性可能会对模型预测产生很大影响,但很少被量化。

方法

我们通过蒙特卡洛模拟评估了输入不确定性对荷兰阿姆斯特丹252个受体站点手机基站射频电磁场(RF-EMF)预测的影响。通过计算模型值与在受体站点进行的RF-EMF测量之间的斯皮尔曼相关性和加权科恩卡帕系数(基于RF-EMF暴露分布的三分位数),确定对排名和分类的影响。

结果

模拟的RF-EMF水平的不确定性很大,变异系数中位数为1.5。受体站点高度、建筑物阻尼和建筑物高度的不确定性对模型输出不确定性的贡献最大。对于暴露排名和分类,建筑物和受体站点的高度是最重要的不确定性来源,其次是建筑物阻尼、天线和站点位置。天线功率、倾斜度、高度和方向的不确定性对模型性能的影响较小。

结论

我们量化了输入数据不确定性对RF-EMF环境暴露模型预测准确性的影响,从而确定了最重要的不确定性来源,并估计了输入数据潜在误差产生的总不确定性。这种方法可用于优化模型并更好地解释模型输出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验