Suppr超能文献

二十年的白血病癌蛋白上位性研究:白血病中表观遗传失调的MLL1范例

Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia.

作者信息

Li Bin E, Ernst Patricia

机构信息

Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.

Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Pediatrics Hematology/Oncology/BMT, University of Colorado Anschutz Medical Center, Aurora, CO, USA.

出版信息

Exp Hematol. 2014 Dec;42(12):995-1012. doi: 10.1016/j.exphem.2014.09.006. Epub 2014 Sep 28.

Abstract

MLL1, located on human chromosome 11, is disrupted in distinct recurrent chromosomal translocations in several leukemia subsets. Studying the MLL1 gene and its oncogenic variants has provided a paradigm for understanding cancer initiation and maintenance through aberrant epigenetic gene regulation. Here we review the historical development of model systems to recapitulate oncogenic MLL1-rearrangement (MLL-r) alleles encoding mixed-lineage leukemia fusion proteins (MLL-FPs) or internal gene rearrangement products. These largely mouse and human cell/xenograft systems have been generated and used to understand how MLL-r alleles affect diverse pathways to result in a highly penetrant, drug-resistant leukemia. The particular features of the animal models influenced the conclusions of mechanisms of transformation. We discuss significant downstream enablers, inhibitors, effectors, and collaborators of MLL-r leukemia, including molecules that directly interact with MLL-FPs and endogenous mixed-lineage leukemia protein, direct target genes of MLL-FPs, and other pathways that have proven to be influential in supporting or suppressing the leukemogenic activity of MLL-FPs. The use of animal models has been complemented with patient sample, genome-wide analyses to delineate the important genomic and epigenomic changes that occur in distinct subsets of MLL-r leukemia. Collectively, these studies have resulted in rapid progress toward developing new strategies for targeting MLL-r leukemia and general cell-biological principles that may broadly inform targeting aberrant epigenetic regulators in other cancers.

摘要

MLL1位于人类11号染色体上,在几种白血病亚型中,其在不同的复发性染色体易位中被破坏。对MLL1基因及其致癌变体的研究为通过异常表观遗传基因调控来理解癌症的发生和维持提供了一个范例。在这里,我们回顾了模型系统的历史发展,以重现编码混合谱系白血病融合蛋白(MLL-FPs)或内部基因重排产物的致癌性MLL1重排(MLL-r)等位基因。这些主要是小鼠和人类细胞/异种移植系统,已被建立并用于了解MLL-r等位基因如何影响多种途径,从而导致高度侵袭性、耐药性白血病。动物模型的特定特征影响了转化机制的结论。我们讨论了MLL-r白血病的重要下游促成因素、抑制剂、效应器和协同因子,包括直接与MLL-FPs和内源性混合谱系白血病蛋白相互作用的分子、MLL-FPs的直接靶基因,以及已被证明对支持或抑制MLL-FPs的致白血病活性有影响的其他途径。动物模型的使用已通过患者样本、全基因组分析得到补充,以描绘在不同亚型的MLL-r白血病中发生的重要基因组和表观基因组变化。总的来说,这些研究在开发针对MLL-r白血病的新策略以及可能广泛指导针对其他癌症中异常表观遗传调节因子的一般细胞生物学原理方面取得了迅速进展。

相似文献

1
Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia.
Exp Hematol. 2014 Dec;42(12):995-1012. doi: 10.1016/j.exphem.2014.09.006. Epub 2014 Sep 28.
2
Hematopoietic transformation in the absence of MLL1/KMT2A: distinctions in target gene reactivation.
Cell Cycle. 2019 Jul;18(14):1525-1531. doi: 10.1080/15384101.2019.1618642. Epub 2019 Jun 4.
3
MLL is essential for NUP98-HOXA9-induced leukemia.
Leukemia. 2017 Oct;31(10):2200-2210. doi: 10.1038/leu.2017.62. Epub 2017 Feb 17.
4
MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele.
Cancer Cell. 2010 Feb 17;17(2):148-59. doi: 10.1016/j.ccr.2009.12.034.
5
MLL translocations, histone modifications and leukaemia stem-cell development.
Nat Rev Cancer. 2007 Nov;7(11):823-33. doi: 10.1038/nrc2253.
6
Distinct pathways affected by menin versus MLL1/MLL2 in MLL-rearranged acute myeloid leukemia.
Exp Hematol. 2019 Jan;69:37-42. doi: 10.1016/j.exphem.2018.10.001. Epub 2018 Oct 10.
7
Proton pump inhibitors selectively suppress MLL rearranged leukemia cells via disrupting MLL1-WDR5 protein-protein interaction.
Eur J Med Chem. 2020 Feb 15;188:112027. doi: 10.1016/j.ejmech.2019.112027. Epub 2019 Dec 31.
8
The role of DOT1L in the maintenance of leukemia gene expression.
Curr Opin Genet Dev. 2016 Feb;36:68-72. doi: 10.1016/j.gde.2016.03.015. Epub 2016 May 3.
9
MLL-AF9 regulates transcriptional initiation in mixed lineage leukemic cells.
J Biol Chem. 2024 Aug;300(8):107566. doi: 10.1016/j.jbc.2024.107566. Epub 2024 Jul 11.
10
Ets1 Plays a Critical Role in MLL/EB1-Mediated Leukemic Transformation in a Mouse Bone Marrow Transplantation Model.
Neoplasia. 2019 May;21(5):469-481. doi: 10.1016/j.neo.2019.03.006. Epub 2019 Apr 8.

引用本文的文献

2
Engineering an inducible leukemia-associated fusion protein enables large-scale ex vivo production of functional human phagocytes.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2312499121. doi: 10.1073/pnas.2312499121. Epub 2024 Jun 10.
3
Progenitor-like cell type of an MLL-EDC4 fusion in acute myeloid leukemia.
Blood Adv. 2023 Nov 28;7(22):7079-7083. doi: 10.1182/bloodadvances.2022009096.
4
Transcriptional addiction in mixed lineage leukemia: new avenues for target therapies.
Blood Sci. 2019 Sep 17;1(1):50-56. doi: 10.1097/BS9.0000000000000011. eCollection 2019 Aug.
5
Does lineage plasticity enable escape from CAR-T cell therapy? Lessons from MLL-r leukemia.
Exp Hematol. 2021 Aug;100:1-11. doi: 10.1016/j.exphem.2021.07.002. Epub 2021 Jul 21.
6
and : usually the bride rather than the bridesmaid.
Haematologica. 2020 Jul;105(7):1757-1760. doi: 10.3324/haematol.2020.253476.
7
A chromatin perspective on metabolic and genotoxic impacts on hematopoietic stem and progenitor cells.
Cell Mol Life Sci. 2020 Oct;77(20):4031-4047. doi: 10.1007/s00018-020-03522-x. Epub 2020 Apr 21.
8
Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia.
J Clin Invest. 2020 Feb 3;130(2):981-997. doi: 10.1172/JCI129126.
9
CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing's sarcoma.
Nat Chem Biol. 2020 Jan;16(1):50-59. doi: 10.1038/s41589-019-0424-1. Epub 2019 Dec 9.
10
Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia.
Nat Commun. 2019 Oct 25;10(1):4869. doi: 10.1038/s41467-019-12555-1.

本文引用的文献

1
The histone methyltransferase activity of MLL1 is dispensable for hematopoiesis and leukemogenesis.
Cell Rep. 2014 May 22;7(4):1239-47. doi: 10.1016/j.celrep.2014.04.015. Epub 2014 May 9.
2
MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia.
Blood. 2014 Jul 10;124(2):263-72. doi: 10.1182/blood-2013-09-525741. Epub 2014 Apr 2.
3
PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway.
Leukemia. 2014 Jul;28(7):1436-48. doi: 10.1038/leu.2013.384. Epub 2013 Dec 26.
4
Initiation of MLL-rearranged AML is dependent on C/EBPα.
J Exp Med. 2014 Jan 13;211(1):5-13. doi: 10.1084/jem.20130932. Epub 2013 Dec 23.
5
Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity.
J Clin Invest. 2014 Jan;124(1):222-36. doi: 10.1172/JCI66005. Epub 2013 Dec 16.
6
Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation.
Genes Dev. 2013 Dec 15;27(24):2648-62. doi: 10.1101/gad.232710.113. Epub 2013 Nov 27.
7
Differential requirement for wild-type Flt3 in leukemia initiation among mouse models of human leukemia.
Exp Hematol. 2014 Mar;42(3):192-203.e1. doi: 10.1016/j.exphem.2013.11.008. Epub 2013 Nov 20.
8
Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner.
Cell Stem Cell. 2014 Jan 2;14(1):68-80. doi: 10.1016/j.stem.2013.10.001. Epub 2013 Nov 14.
10
Epigenetic roles of MLL oncoproteins are dependent on NF-κB.
Cancer Cell. 2013 Oct 14;24(4):423-37. doi: 10.1016/j.ccr.2013.08.019. Epub 2013 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验