Yildirim Ilyas, Kierzek Elzbieta, Kierzek Ryszard, Schatz George C
Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.
J Phys Chem B. 2014 Dec 11;118(49):14177-87. doi: 10.1021/jp506703g. Epub 2014 Sep 30.
When used in nucleic acid duplexes, locked nucleic acid (LNA) and 2'-O-methyl RNA residues enhance the duplex stabilities, and this makes it possible to create much better RNA aptamers to target specific molecules in cells. Thus, LNA and 2'-O-methyl RNA residues are finding increasingly widespread use in RNA-based therapeutics. Herein, we utilize molecular dynamics (MD) simulations and UV melting experiments to investigate the structural and thermodynamic properties of 13 nucleic acid duplexes, including full DNA, RNA, LNA, and 2'-O-methyl RNA duplexes as well as hybrid systems such as LNA:RNA, 2'-O-methyl RNA:RNA, LNA/2'-O-methyl RNA:RNA, and RNA/2'-O-methyl RNA:RNA duplexes. The MD simulations are based on a version of the Amber force field revised specifically for RNA and LNA residues. Our results indicate that LNA and 2'-O-methyl RNA residues have two different hybridization mechanisms when included in hybrid duplexes with RNA wherein the former underwinds while the latter overwinds the duplexes. These computational predictions are supported by X-ray structures of LNA and 2'-O-methyl RNA duplexes that were recently presented by different groups, and there is also good agreement with the measured thermal stabilities of the duplexes. We find out that the "underwinding" phenomenon seen in LNA and LNA:RNA hybrid duplexes happens due to expansion of the major groove widths (Mgw) of the duplexes that is associated with decrease in the slide and twist values in base-pair steps. In contrast, 2'-O-methyl RNA residues in RNA duplexes slightly overwind the duplexes while the backbone is forced to stay in C3'-endo. Moreover, base-pair stacking in the LNA and LNA:RNA hybrid systems is gradually reduced with the inclusion of LNA residues in the duplexes while no such effect is seen in the 2'-O-methyl RNA systems. Our results show how competition between base stacking and structural rigidity in these RNA hybrid systems influences structures and stabilities. Even though both LNA and 2'-O-methyl RNA residues have C3'-endo sugar puckering, structurally LNA residues have a frozen sugar backbone which provides entropic enhancement of stabilities while the 2'-O-methyl RNA residues are more flexible and maintain base stacking that is almost untouched compared to RNA. Thus, enhancement of the structural stabilities of RNA duplexes by 2'-O-methyl RNA modifications is smaller than for the corresponding LNA modifications. Indeed, our experimental measurements show that on average each 2'-O-methyl RNA and LNA substitution in a RNA duplex enhances duplex stability by 0.2 and 1.4 kcal/mol, respectively. Our computational binding free energy predictions are qualitatively in line with these results. The only exception is for the full 2'-O-methyl RNA duplex, which is overstabilized, implying that further force field revisions are needed. Collectively, the results presented in this paper explain the atomistic details of the structural and thermodynamic roles of LNA and 2'-O-methyl RNA residues in RNA hybrid duplexes, shedding light on the mechanism behind targeting endogenous micro RNA (miRNA) in order to regulate mRNA activity and inhibit gene expression in the cell.
当用于核酸双链体时,锁核酸(LNA)和2'-O-甲基RNA残基可增强双链体稳定性,这使得制备出能更好地靶向细胞中特定分子的RNA适配体成为可能。因此,LNA和2'-O-甲基RNA残基在基于RNA的治疗中得到越来越广泛的应用。在此,我们利用分子动力学(MD)模拟和紫外熔解实验来研究13种核酸双链体的结构和热力学性质,包括全DNA、RNA、LNA和2'-O-甲基RNA双链体,以及诸如LNA:RNA、2'-O-甲基RNA:RNA、LNA/2'-O-甲基RNA:RNA和RNA/2'-O-甲基RNA:RNA双链体等杂交体系。MD模拟基于专门针对RNA和LNA残基修订的Amber力场版本。我们的结果表明,当LNA和2'-O-甲基RNA残基包含在与RNA的杂交双链体中时,具有两种不同的杂交机制,其中前者使双链体发生负超螺旋,而后者使双链体发生正超螺旋。这些计算预测得到了不同研究团队最近报道的LNA和2'-O-甲基RNA双链体的X射线结构的支持,并且与双链体的实测热稳定性也有很好的一致性。我们发现,在LNA和LNA:RNA杂交双链体中观察到的“负超螺旋”现象是由于双链体大沟宽度(Mgw)的扩大,这与碱基对步移中滑动和扭转值的降低有关。相比之下,RNA双链体中的2'-O-甲基RNA残基会使双链体稍微发生正超螺旋,同时主链被迫保持在C3'-内向构象。此外,在双链体中加入LNA残基会使LNA和LNA:RNA杂交体系中的碱基对堆积逐渐减少,而在2'-O-甲基RNA体系中未观察到这种效应。我们的结果显示了这些RNA杂交体系中碱基堆积和结构刚性之间的竞争如何影响结构和稳定性。尽管LNA和2'-O-甲基RNA残基都具有C3'-内向型糖环构象,但在结构上LNA残基具有冻结的糖骨架,这提供了稳定性的熵增强,而2'-O-甲基RNA残基更具灵活性,并保持了与RNA相比几乎未受影响的碱基堆积。因此,2'-O-甲基RNA修饰对RNA双链体结构稳定性的增强作用小于相应的LNA修饰。实际上,我们的实验测量表明,在RNA双链体中,平均每个2'-O-甲基RNA和LNA取代分别使双链体稳定性提高0.2和1.4千卡/摩尔。我们的计算结合自由能预测在定性上与这些结果一致。唯一的例外是全2'-O-甲基RNA双链体,其稳定性过高,这意味着需要进一步修订力场。总体而言,本文给出的结果解释了LNA和2'-O-甲基RNA残基在RNA杂交双链体中的结构和热力学作用的原子细节,揭示了靶向内源性微小RNA(miRNA)以调节mRNA活性和抑制细胞中基因表达背后的机制。