Suppr超能文献

酵母输入蛋白α(Srp1)在核蛋白的输入以及将蛋白酶体靶向细胞核的过程中发挥着不同的作用。

Yeast importin-α (Srp1) performs distinct roles in the import of nuclear proteins and in targeting proteasomes to the nucleus.

作者信息

Chen Li, Madura Kiran

机构信息

Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854.

Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854.

出版信息

J Biol Chem. 2014 Nov 14;289(46):32339-32352. doi: 10.1074/jbc.M114.582023. Epub 2014 Oct 1.

Abstract

Srp1 (importin-α) can translocate proteins that contain a nuclear localization signal (NLS) into the nucleus. The loss of Srp1 is lethal, although several temperature-sensitive mutants have been described. Among these mutants, srp1-31 displays the characteristic nuclear import defect of importin-α mutants, whereas srp1-49 shows a defect in protein degradation. We characterized these and additional srp1 mutants to determine whether distinct mechanisms were required for intracellular proteolysis and the import of NLS-containing proteins. We determined that srp1 mutants that failed to import NLS-containing proteins (srp1-31 and srp1-55) successfully localized proteasomes to the nucleus. In contrast, srp1 mutants that did not target proteasomes to the nucleus (srp1-49 and srp1-E402Q) were able to import NLS-containing proteins. The proteasome targeting defect of specific srp1 mutants caused stabilization of nuclear substrates and overall accumulation of multiubiquitylated proteins. Co-expression of a member of each class of srp1 mutants corrected both the proteasome localization defect and the import of NLS-containing proteins. These findings indicate that the targeting of proteasomes to the nucleus occurs by a mechanism distinct from the Srp1-mediated import of nuclear proteins.

摘要

Srp1(输入蛋白α)能够将含有核定位信号(NLS)的蛋白质转运到细胞核中。尽管已经描述了几种温度敏感型突变体,但Srp1的缺失是致死性的。在这些突变体中,srp1 - 31表现出输入蛋白α突变体典型的核输入缺陷,而srp1 - 49则表现出蛋白质降解缺陷。我们对这些以及其他srp1突变体进行了表征,以确定细胞内蛋白质水解和含NLS蛋白质的输入是否需要不同的机制。我们发现,未能导入含NLS蛋白质的srp1突变体(srp1 - 31和srp1 - 55)成功地将蛋白酶体定位到了细胞核。相反,未将蛋白酶体靶向细胞核的srp1突变体(srp1 - 49和srp1 - E402Q)能够导入含NLS的蛋白质。特定srp1突变体的蛋白酶体靶向缺陷导致核底物的稳定以及多泛素化蛋白质的整体积累。每类srp1突变体的一个成员共表达可纠正蛋白酶体定位缺陷和含NLS蛋白质的输入。这些发现表明,蛋白酶体靶向细胞核的机制与Srp1介导的核蛋白输入机制不同。

相似文献

1
Yeast importin-α (Srp1) performs distinct roles in the import of nuclear proteins and in targeting proteasomes to the nucleus.
J Biol Chem. 2014 Nov 14;289(46):32339-32352. doi: 10.1074/jbc.M114.582023. Epub 2014 Oct 1.
3
Sts1 plays a key role in targeting proteasomes to the nucleus.
J Biol Chem. 2011 Jan 28;286(4):3104-18. doi: 10.1074/jbc.M110.135863. Epub 2010 Nov 12.
6
Classical NLS proteins from Saccharomyces cerevisiae.
J Mol Biol. 2008 Jun 13;379(4):678-94. doi: 10.1016/j.jmb.2008.04.038. Epub 2008 Apr 22.
7
Interaction of yeast importin alpha with the NLS of prothymosin alpha is insufficient to trigger nuclear uptake of cargos.
Biochem Biophys Res Commun. 2000 Aug 2;274(2):548-52. doi: 10.1006/bbrc.2000.3183.
8
A novel conserved nuclear localization signal is recognized by a group of yeast importins.
J Biol Chem. 2007 Jul 6;282(27):19292-301. doi: 10.1074/jbc.M700217200. Epub 2007 May 7.
9
Yeast karyopherin Kap95 is required for cell cycle progression at Start.
BMC Cell Biol. 2010 Jun 29;11:47. doi: 10.1186/1471-2121-11-47.

引用本文的文献

2
Structure, Dynamics and Function of the 26S Proteasome.
Subcell Biochem. 2021;96:1-151. doi: 10.1007/978-3-030-58971-4_1.
5
Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation.
Front Mol Biosci. 2019 Jun 7;6:40. doi: 10.3389/fmolb.2019.00040. eCollection 2019.
6
Nuclear Transport of Yeast Proteasomes.
Front Mol Biosci. 2019 May 16;6:34. doi: 10.3389/fmolb.2019.00034. eCollection 2019.
7
Spatiotemporal control of spindle disassembly in fission yeast.
Cell Mol Life Sci. 2019 Sep;76(18):3543-3551. doi: 10.1007/s00018-019-03139-9. Epub 2019 May 25.
8
Identification of the Novel Allele in a Screen for Cold-Sensitive mRNA Export Mutants in .
G3 (Bethesda). 2018 Aug 30;8(9):2991-3003. doi: 10.1534/g3.118.200447.
9
Proteasomes tether to two distinct sites at the nuclear pore complex.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13726-13731. doi: 10.1073/pnas.1716305114. Epub 2017 Dec 11.
10
Catalytically Active Proteasomes Function Predominantly in the Cytosol.
J Biol Chem. 2016 Sep 2;291(36):18765-77. doi: 10.1074/jbc.M115.712406. Epub 2016 Jul 14.

本文引用的文献

1
Degradation of specific nuclear proteins occurs in the cytoplasm in Saccharomyces cerevisiae.
Genetics. 2014 May;197(1):193-7. doi: 10.1534/genetics.114.163824. Epub 2014 Mar 12.
2
The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome.
Mol Biol Cell. 2013 Dec;24(24):3920-38. doi: 10.1091/mbc.E13-07-0412. Epub 2013 Oct 23.
3
Blm10 facilitates nuclear import of proteasome core particles.
EMBO J. 2013 Oct 16;32(20):2697-707. doi: 10.1038/emboj.2013.192. Epub 2013 Aug 27.
5
The nuclear import factor importin α4 can protect against oxidative stress.
Biochim Biophys Acta. 2013 Oct;1833(10):2348-56. doi: 10.1016/j.bbamcr.2013.06.007. Epub 2013 Jun 14.
6
7
Implications for proteasome nuclear localization revealed by the structure of the nuclear proteasome tether protein Cut8.
Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16950-5. doi: 10.1073/pnas.1103617108. Epub 2011 Oct 5.
8
Sts1 plays a key role in targeting proteasomes to the nucleus.
J Biol Chem. 2011 Jan 28;286(4):3104-18. doi: 10.1074/jbc.M110.135863. Epub 2010 Nov 12.
9
hMSH5 is a nucleocytoplasmic shuttling protein whose stability depends on its subcellular localization.
Nucleic Acids Res. 2010 Jun;38(11):3655-71. doi: 10.1093/nar/gkq098. Epub 2010 Feb 25.
10
Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10171-6. doi: 10.1073/pnas.0900604106. Epub 2009 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验